001019361 001__ 1019361
001019361 005__ 20231214201905.0
001019361 0247_ $$2doi$$a10.5281/ZENODO.10010615
001019361 0247_ $$2datacite_doi$$a10.34734/FZJ-2023-05331
001019361 037__ $$aFZJ-2023-05331
001019361 041__ $$aEnglish
001019361 1001_ $$0P:(DE-Juel1)190195$$aSzczepanik, Michał$$b0$$eCorresponding author
001019361 1112_ $$aINM Retreat 2023$$cJülich$$d2023-10-17 - 2023-10-18$$wGermany
001019361 245__ $$aLightweight data publishing on Jülich Data with DataLad$$f2023-10-17 - 
001019361 260__ $$c2023
001019361 3367_ $$033$$2EndNote$$aConference Paper
001019361 3367_ $$2DataCite$$aOther
001019361 3367_ $$2BibTeX$$aINPROCEEDINGS
001019361 3367_ $$2ORCID$$aLECTURE_SPEECH
001019361 3367_ $$0PUB:(DE-HGF)31$$2PUB:(DE-HGF)$$aTalk (non-conference)$$btalk$$mtalk$$s1702479697_3807$$xOther
001019361 3367_ $$2DINI$$aOther
001019361 520__ $$aJülich DATA is the central institutional repository for research data of the Research Center Jülich and supports sharing, preserving, citing, exploring, and analyzing research data with descriptive metadata, without hosting large files. In this tutorial, participants will discover how DataLad can integrate with Dataverse and have the best of both worlds: Discoverability and metadata with Jülich DATA, and actionable data tracking with DataLad. With conceptual and hands-on elements, we will learn how to publish or clone lightweight DataLad datasets to and from Jülich DATA.
001019361 536__ $$0G:(DE-HGF)POF4-5254$$a5254 - Neuroscientific Data Analytics and AI (POF4-525)$$cPOF4-525$$fPOF IV$$x0
001019361 536__ $$0G:(GEPRIS)458705875$$aSFB 1451 INF - Datenmanagement für computergestützte Modellierung (INF) (458705875)$$c458705875$$x1
001019361 588__ $$aDataset connected to DataCite
001019361 773__ $$a10.5281/ZENODO.10010615
001019361 8564_ $$uhttps://juser.fz-juelich.de/record/1019361/files/Lightweight_Juelich_Data_Datalad-1.pdf$$yOpenAccess
001019361 8564_ $$uhttps://juser.fz-juelich.de/record/1019361/files/Lightweight_Juelich_Data_Datalad-1.gif?subformat=icon$$xicon$$yOpenAccess
001019361 8564_ $$uhttps://juser.fz-juelich.de/record/1019361/files/Lightweight_Juelich_Data_Datalad-1.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
001019361 8564_ $$uhttps://juser.fz-juelich.de/record/1019361/files/Lightweight_Juelich_Data_Datalad-1.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
001019361 8564_ $$uhttps://juser.fz-juelich.de/record/1019361/files/Lightweight_Juelich_Data_Datalad-1.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
001019361 909CO $$ooai:juser.fz-juelich.de:1019361$$popenaire$$popen_access$$pVDB$$pdriver
001019361 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)190195$$aForschungszentrum Jülich$$b0$$kFZJ
001019361 9131_ $$0G:(DE-HGF)POF4-525$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5254$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vDecoding Brain Organization and Dysfunction$$x0
001019361 9141_ $$y2023
001019361 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001019361 9201_ $$0I:(DE-Juel1)INM-7-20090406$$kINM-7$$lGehirn & Verhalten$$x0
001019361 980__ $$atalk
001019361 980__ $$aVDB
001019361 980__ $$aUNRESTRICTED
001019361 980__ $$aI:(DE-Juel1)INM-7-20090406
001019361 9801_ $$aFullTexts