001019361 001__ 1019361 001019361 005__ 20231214201905.0 001019361 0247_ $$2doi$$a10.5281/ZENODO.10010615 001019361 0247_ $$2datacite_doi$$a10.34734/FZJ-2023-05331 001019361 037__ $$aFZJ-2023-05331 001019361 041__ $$aEnglish 001019361 1001_ $$0P:(DE-Juel1)190195$$aSzczepanik, Michał$$b0$$eCorresponding author 001019361 1112_ $$aINM Retreat 2023$$cJülich$$d2023-10-17 - 2023-10-18$$wGermany 001019361 245__ $$aLightweight data publishing on Jülich Data with DataLad$$f2023-10-17 - 001019361 260__ $$c2023 001019361 3367_ $$033$$2EndNote$$aConference Paper 001019361 3367_ $$2DataCite$$aOther 001019361 3367_ $$2BibTeX$$aINPROCEEDINGS 001019361 3367_ $$2ORCID$$aLECTURE_SPEECH 001019361 3367_ $$0PUB:(DE-HGF)31$$2PUB:(DE-HGF)$$aTalk (non-conference)$$btalk$$mtalk$$s1702479697_3807$$xOther 001019361 3367_ $$2DINI$$aOther 001019361 520__ $$aJülich DATA is the central institutional repository for research data of the Research Center Jülich and supports sharing, preserving, citing, exploring, and analyzing research data with descriptive metadata, without hosting large files. In this tutorial, participants will discover how DataLad can integrate with Dataverse and have the best of both worlds: Discoverability and metadata with Jülich DATA, and actionable data tracking with DataLad. With conceptual and hands-on elements, we will learn how to publish or clone lightweight DataLad datasets to and from Jülich DATA. 001019361 536__ $$0G:(DE-HGF)POF4-5254$$a5254 - Neuroscientific Data Analytics and AI (POF4-525)$$cPOF4-525$$fPOF IV$$x0 001019361 536__ $$0G:(GEPRIS)458705875$$aSFB 1451 INF - Datenmanagement für computergestützte Modellierung (INF) (458705875)$$c458705875$$x1 001019361 588__ $$aDataset connected to DataCite 001019361 773__ $$a10.5281/ZENODO.10010615 001019361 8564_ $$uhttps://juser.fz-juelich.de/record/1019361/files/Lightweight_Juelich_Data_Datalad-1.pdf$$yOpenAccess 001019361 8564_ $$uhttps://juser.fz-juelich.de/record/1019361/files/Lightweight_Juelich_Data_Datalad-1.gif?subformat=icon$$xicon$$yOpenAccess 001019361 8564_ $$uhttps://juser.fz-juelich.de/record/1019361/files/Lightweight_Juelich_Data_Datalad-1.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess 001019361 8564_ $$uhttps://juser.fz-juelich.de/record/1019361/files/Lightweight_Juelich_Data_Datalad-1.jpg?subformat=icon-180$$xicon-180$$yOpenAccess 001019361 8564_ $$uhttps://juser.fz-juelich.de/record/1019361/files/Lightweight_Juelich_Data_Datalad-1.jpg?subformat=icon-640$$xicon-640$$yOpenAccess 001019361 909CO $$ooai:juser.fz-juelich.de:1019361$$popenaire$$popen_access$$pVDB$$pdriver 001019361 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)190195$$aForschungszentrum Jülich$$b0$$kFZJ 001019361 9131_ $$0G:(DE-HGF)POF4-525$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5254$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vDecoding Brain Organization and Dysfunction$$x0 001019361 9141_ $$y2023 001019361 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess 001019361 9201_ $$0I:(DE-Juel1)INM-7-20090406$$kINM-7$$lGehirn & Verhalten$$x0 001019361 980__ $$atalk 001019361 980__ $$aVDB 001019361 980__ $$aUNRESTRICTED 001019361 980__ $$aI:(DE-Juel1)INM-7-20090406 001019361 9801_ $$aFullTexts