| 001 | 1019361 | ||
| 005 | 20231214201905.0 | ||
| 024 | 7 | _ | |a 10.5281/ZENODO.10010615 |2 doi |
| 024 | 7 | _ | |a 10.34734/FZJ-2023-05331 |2 datacite_doi |
| 037 | _ | _ | |a FZJ-2023-05331 |
| 041 | _ | _ | |a English |
| 100 | 1 | _ | |a Szczepanik, Michał |0 P:(DE-Juel1)190195 |b 0 |e Corresponding author |
| 111 | 2 | _ | |a INM Retreat 2023 |c Jülich |d 2023-10-17 - 2023-10-18 |w Germany |
| 245 | _ | _ | |a Lightweight data publishing on Jülich Data with DataLad |f 2023-10-17 - |
| 260 | _ | _ | |c 2023 |
| 336 | 7 | _ | |a Conference Paper |0 33 |2 EndNote |
| 336 | 7 | _ | |a Other |2 DataCite |
| 336 | 7 | _ | |a INPROCEEDINGS |2 BibTeX |
| 336 | 7 | _ | |a LECTURE_SPEECH |2 ORCID |
| 336 | 7 | _ | |a Talk (non-conference) |b talk |m talk |0 PUB:(DE-HGF)31 |s 1702479697_3807 |2 PUB:(DE-HGF) |x Other |
| 336 | 7 | _ | |a Other |2 DINI |
| 520 | _ | _ | |a Jülich DATA is the central institutional repository for research data of the Research Center Jülich and supports sharing, preserving, citing, exploring, and analyzing research data with descriptive metadata, without hosting large files. In this tutorial, participants will discover how DataLad can integrate with Dataverse and have the best of both worlds: Discoverability and metadata with Jülich DATA, and actionable data tracking with DataLad. With conceptual and hands-on elements, we will learn how to publish or clone lightweight DataLad datasets to and from Jülich DATA. |
| 536 | _ | _ | |a 5254 - Neuroscientific Data Analytics and AI (POF4-525) |0 G:(DE-HGF)POF4-5254 |c POF4-525 |f POF IV |x 0 |
| 536 | _ | _ | |a SFB 1451 INF - Datenmanagement für computergestützte Modellierung (INF) (458705875) |0 G:(GEPRIS)458705875 |c 458705875 |x 1 |
| 588 | _ | _ | |a Dataset connected to DataCite |
| 773 | _ | _ | |a 10.5281/ZENODO.10010615 |
| 856 | 4 | _ | |y OpenAccess |u https://juser.fz-juelich.de/record/1019361/files/Lightweight_Juelich_Data_Datalad-1.pdf |
| 856 | 4 | _ | |y OpenAccess |x icon |u https://juser.fz-juelich.de/record/1019361/files/Lightweight_Juelich_Data_Datalad-1.gif?subformat=icon |
| 856 | 4 | _ | |y OpenAccess |x icon-1440 |u https://juser.fz-juelich.de/record/1019361/files/Lightweight_Juelich_Data_Datalad-1.jpg?subformat=icon-1440 |
| 856 | 4 | _ | |y OpenAccess |x icon-180 |u https://juser.fz-juelich.de/record/1019361/files/Lightweight_Juelich_Data_Datalad-1.jpg?subformat=icon-180 |
| 856 | 4 | _ | |y OpenAccess |x icon-640 |u https://juser.fz-juelich.de/record/1019361/files/Lightweight_Juelich_Data_Datalad-1.jpg?subformat=icon-640 |
| 909 | C | O | |o oai:juser.fz-juelich.de:1019361 |p openaire |p open_access |p VDB |p driver |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 0 |6 P:(DE-Juel1)190195 |
| 913 | 1 | _ | |a DE-HGF |b Key Technologies |l Natural, Artificial and Cognitive Information Processing |1 G:(DE-HGF)POF4-520 |0 G:(DE-HGF)POF4-525 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-500 |4 G:(DE-HGF)POF |v Decoding Brain Organization and Dysfunction |9 G:(DE-HGF)POF4-5254 |x 0 |
| 914 | 1 | _ | |y 2023 |
| 915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
| 920 | 1 | _ | |0 I:(DE-Juel1)INM-7-20090406 |k INM-7 |l Gehirn & Verhalten |x 0 |
| 980 | _ | _ | |a talk |
| 980 | _ | _ | |a VDB |
| 980 | _ | _ | |a UNRESTRICTED |
| 980 | _ | _ | |a I:(DE-Juel1)INM-7-20090406 |
| 980 | 1 | _ | |a FullTexts |
| Library | Collection | CLSMajor | CLSMinor | Language | Author |
|---|