001     1019363
005     20250822121436.0
024 7 _ |a 10.5281/ZENODO.5745504
|2 doi
037 _ _ |a FZJ-2023-05333
041 _ _ |a English
100 1 _ |a Garcia de Gonzalo, Simon
|0 0000-0002-5699-1793
|b 0
111 2 _ |a ISC High Performance 2023
|g ISC23
|c Hamburg
|d 2023-05-21 - 2023-05-21
|w Germany
245 _ _ |a Efficient Distributed GPU Programming for Exascale
260 _ _ |c 2023
336 7 _ |a lecture
|2 DRIVER
336 7 _ |a Generic
|0 31
|2 EndNote
336 7 _ |a MISC
|2 BibTeX
336 7 _ |a Lecture
|b lecture
|m lecture
|0 PUB:(DE-HGF)17
|s 1703051177_23279
|2 PUB:(DE-HGF)
|x After Call
336 7 _ |a LECTURE_SPEECH
|2 ORCID
336 7 _ |a Text
|2 DataCite
500 _ _ |a Github repository: https://github.com/FZJ-JSC/tutorial-multi-gpu/tree/v4.0-isc23
520 _ _ |a Over the past years, GPUs became ubiquitous in HPC installations around the world, delivering the majority of performance of some of the largest supercomputers (e.g. Summit, Sierra, JUWELS Booster). This trend continues in the recently deployed and upcoming Pre-Exascale and Exascale systems (LUMI, Leonardo; Frontier, Perlmutter): GPUs are chosen as the core computing devices to enter this next era of HPC. To take advantage of future GPU-accelerated systems with tens of thousands of devices, application developers need to have the propers skills and tools to understand, manage, and optimize distributed GPU applications. In this tutorial, participants will learn techniques to efficiently program large-scale multi-GPU systems. While programming multiple GPUs with MPI is explained in detail, also advanced tuning techniques and complementing programming models like NCCL and NVSHMEM are presented. Tools for analysis are shown and used to motivate and implement performance optimizations. The tutorial teaches fundamental concepts that apply to GPU-accelerated systems in general, taking the NVIDIA platform as an example. It is a combination of lectures and hands-on exercises, using one of Europe's fastest supercomputers, JUWELS Booster, for interactive learning and discovery.
536 _ _ |a 5112 - Cross-Domain Algorithms, Tools, Methods Labs (ATMLs) and Research Groups (POF4-511)
|0 G:(DE-HGF)POF4-5112
|c POF4-511
|f POF IV
|x 0
536 _ _ |a 5122 - Future Computing & Big Data Systems (POF4-512)
|0 G:(DE-HGF)POF4-5122
|c POF4-512
|f POF IV
|x 1
536 _ _ |a ATML-X-DEV - ATML Accelerating Devices (ATML-X-DEV)
|0 G:(DE-Juel-1)ATML-X-DEV
|c ATML-X-DEV
|x 2
588 _ _ |a Dataset connected to DataCite
700 1 _ |a Herten, Andreas
|0 P:(DE-Juel1)145478
|b 1
|e Corresponding author
|u fzj
700 1 _ |a Hrywniak, Markus
|0 P:(DE-Juel1)180799
|b 2
|u fzj
700 1 _ |a Kraus, Jiri
|0 P:(DE-Juel1)137023
|b 3
|u fzj
700 1 _ |a Oden, Lena
|0 P:(DE-Juel1)172093
|b 4
773 _ _ |a 10.5281/ZENODO.5745504
856 4 _ |u https://zenodo.org/records/7981538
909 C O |o oai:juser.fz-juelich.de:1019363
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)145478
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)180799
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)137023
913 1 _ |a DE-HGF
|b Key Technologies
|l Engineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action
|1 G:(DE-HGF)POF4-510
|0 G:(DE-HGF)POF4-511
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Enabling Computational- & Data-Intensive Science and Engineering
|9 G:(DE-HGF)POF4-5112
|x 0
913 1 _ |a DE-HGF
|b Key Technologies
|l Engineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action
|1 G:(DE-HGF)POF4-510
|0 G:(DE-HGF)POF4-512
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Supercomputing & Big Data Infrastructures
|9 G:(DE-HGF)POF4-5122
|x 1
914 1 _ |y 2023
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)JSC-20090406
|k JSC
|l Jülich Supercomputing Center
|x 0
980 _ _ |a lecture
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)JSC-20090406
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21