001     1019401
005     20240610121032.0
024 7 _ |a 10.3390/ijms242216379
|2 doi
024 7 _ |a 1422-0067
|2 ISSN
024 7 _ |a 1661-6596
|2 ISSN
024 7 _ |a 10.34734/FZJ-2023-05361
|2 datacite_doi
024 7 _ |a 38003569
|2 pmid
024 7 _ |a WOS:001113898000001
|2 WOS
037 _ _ |a FZJ-2023-05361
082 _ _ |a 540
100 1 _ |a Schedler, Benno
|0 0009-0000-4050-2548
|b 0
245 _ _ |a The Thermodynamic Fingerprints of Ultra-Tight Nanobody–Antigen Binding Probed via Two-Color Single-Molecule Coincidence Detection
260 _ _ |a Basel
|c 2023
|b Molecular Diversity Preservation International
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1702479835_3807
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Life on the molecular scale is based on a versatile interplay of biomolecules, a featurethat is relevant for the formation of macromolecular complexes. Fluorescence-based two-colorcoincidence detection is widely used to characterize molecular binding and was recently improvedby a brightness-gated version which gives more accurate results. We developed and establishedprotocols which make use of coincidence detection to quantify binding fractions between interactionpartners labeled with fluorescence dyes of different colors. Since the applied technique is intrinsicallyrelated to single-molecule detection, the concentration of diffusing molecules for confocal detectionis typically in the low picomolar regime. This makes the approach a powerful tool for determiningbi-molecular binding affinities, in terms of KD values, in this regime. We demonstrated the reliabilityof our approach by analyzing very strong nanobody-EGFP binding. By measuring the affinity atdifferent temperatures, we were able to determine the thermodynamic parameters of the bindinginteraction. The results show that the ultra-tight binding is dominated by entropic contributions.
536 _ _ |a 5352 - Understanding the Functionality of Soft Matter and Biomolecular Systems (POF4-535)
|0 G:(DE-HGF)POF4-5352
|c POF4-535
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Yukhnovets, Olessya
|b 1
700 1 _ |a Lindner, Lennart
|0 0000-0001-9174-4352
|b 2
700 1 _ |a Meyer, Alida
|b 3
700 1 _ |a Fitter, Jörg
|0 P:(DE-Juel1)131961
|b 4
|e Corresponding author
773 _ _ |a 10.3390/ijms242216379
|g Vol. 24, no. 22, p. 16379 -
|0 PERI:(DE-600)2019364-6
|n 22
|p 16379 -
|t International journal of molecular sciences
|v 24
|y 2023
|x 1422-0067
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/1019401/files/Thermodynamic%20Fingerprints.pdf
856 4 _ |y OpenAccess
|x icon
|u https://juser.fz-juelich.de/record/1019401/files/Thermodynamic%20Fingerprints.gif?subformat=icon
856 4 _ |y OpenAccess
|x icon-1440
|u https://juser.fz-juelich.de/record/1019401/files/Thermodynamic%20Fingerprints.jpg?subformat=icon-1440
856 4 _ |y OpenAccess
|x icon-180
|u https://juser.fz-juelich.de/record/1019401/files/Thermodynamic%20Fingerprints.jpg?subformat=icon-180
856 4 _ |y OpenAccess
|x icon-640
|u https://juser.fz-juelich.de/record/1019401/files/Thermodynamic%20Fingerprints.jpg?subformat=icon-640
909 C O |o oai:juser.fz-juelich.de:1019401
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)131961
913 1 _ |a DE-HGF
|b Key Technologies
|l Materials Systems Engineering
|1 G:(DE-HGF)POF4-530
|0 G:(DE-HGF)POF4-535
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Materials Information Discovery
|9 G:(DE-HGF)POF4-5352
|x 0
914 1 _ |y 2023
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2023-08-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2023-08-25
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2023-08-25
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b INT J MOL SCI : 2022
|d 2023-08-25
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b INT J MOL SCI : 2022
|d 2023-08-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2023-07-07T16:31:47Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2023-07-07T16:31:47Z
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2023-08-25
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2023-08-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2023-08-25
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2023-08-25
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2023-08-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2023-08-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2023-08-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0320
|2 StatID
|b PubMed Central
|d 2023-08-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2023-08-25
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Anonymous peer review
|d 2023-07-07T16:31:47Z
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IBI-6-20200312
|k IBI-6
|l Zelluläre Strukturbiologie
|x 0
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IBI-6-20200312
981 _ _ |a I:(DE-Juel1)ER-C-3-20170113


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21