001019402 001__ 1019402
001019402 005__ 20240610120204.0
001019402 0247_ $$2doi$$a10.3390/biom13091280
001019402 0247_ $$2datacite_doi$$a10.34734/FZJ-2023-05362
001019402 0247_ $$2pmid$$a37759680
001019402 0247_ $$2WOS$$aWOS:001074347000001
001019402 037__ $$aFZJ-2023-05362
001019402 082__ $$a570
001019402 1001_ $$0P:(DE-Juel1)180391$$aBustorff, Nuno$$b0
001019402 245__ $$aFeatures of Protein Unfolding Transitions and Their Relation to Domain Topology Probed by Single-Molecule FRET
001019402 260__ $$aBasel$$bMDPI$$c2023
001019402 3367_ $$2DRIVER$$aarticle
001019402 3367_ $$2DataCite$$aOutput Types/Journal article
001019402 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1702479891_27254
001019402 3367_ $$2BibTeX$$aARTICLE
001019402 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001019402 3367_ $$00$$2EndNote$$aJournal Article
001019402 520__ $$aA protein fold is defined as a structural arrangement of a secondary structure in a threedimensionalspace. It would be interesting to know whether a particular fold can be assigned to certainfeatures of the corresponding folding/unfolding transitions. To understand the underlying principlesof the manifold folding transitions in more detail, single-molecule FRET is the method of choice.Taking the two-domain protein phosphoglycerate kinase (PGK) as an example, we investigateddenaturant-induced unfolded states of PGK using the above method. For this purpose, differentintramolecular distances within the two domains were measured. In addition to the known two-statetransition, a transition with a compact folding intermediate was also identified in each of the twodomains. Based on the structural homology of the domains (characterized by a Rossmann fold)and the striking similarity in the features of the measured distance changes during unfolding, clearevidence emerged that the underlying domain topology plays an important role in determining theobserved structural changes.
001019402 536__ $$0G:(DE-HGF)POF4-5352$$a5352 - Understanding the Functionality of Soft Matter and Biomolecular Systems (POF4-535)$$cPOF4-535$$fPOF IV$$x0
001019402 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001019402 7001_ $$0P:(DE-Juel1)131961$$aFitter, Jörg$$b1$$eCorresponding author
001019402 773__ $$0PERI:(DE-600)2701262-1$$a10.3390/biom13091280$$gVol. 13, no. 9, p. 1280 -$$n9$$p1280 -$$tBiomolecules$$v13$$x2218-273X$$y2023
001019402 8564_ $$uhttps://juser.fz-juelich.de/record/1019402/files/Features%20of%20Protein%20Unfolding.pdf$$yOpenAccess
001019402 8564_ $$uhttps://juser.fz-juelich.de/record/1019402/files/Features%20of%20Protein%20Unfolding.gif?subformat=icon$$xicon$$yOpenAccess
001019402 8564_ $$uhttps://juser.fz-juelich.de/record/1019402/files/Features%20of%20Protein%20Unfolding.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
001019402 8564_ $$uhttps://juser.fz-juelich.de/record/1019402/files/Features%20of%20Protein%20Unfolding.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
001019402 8564_ $$uhttps://juser.fz-juelich.de/record/1019402/files/Features%20of%20Protein%20Unfolding.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
001019402 909CO $$ooai:juser.fz-juelich.de:1019402$$popenaire$$pdnbdelivery$$pdriver$$pVDB$$popen_access
001019402 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)180391$$aForschungszentrum Jülich$$b0$$kFZJ
001019402 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131961$$aForschungszentrum Jülich$$b1$$kFZJ
001019402 9131_ $$0G:(DE-HGF)POF4-535$$1G:(DE-HGF)POF4-530$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5352$$aDE-HGF$$bKey Technologies$$lMaterials Systems Engineering$$vMaterials Information Discovery$$x0
001019402 9141_ $$y2023
001019402 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-10-26
001019402 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2023-10-26
001019402 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2023-10-26
001019402 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2023-10-26
001019402 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2023-10-26
001019402 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bBIOMOLECULES : 2022$$d2023-10-26
001019402 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2023-04-12T14:57:05Z
001019402 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2023-04-12T14:57:05Z
001019402 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2023-10-26
001019402 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2023-10-26
001019402 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2023-10-26
001019402 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
001019402 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001019402 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2023-10-26
001019402 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2023-10-26
001019402 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bBIOMOLECULES : 2022$$d2023-10-26
001019402 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2023-10-26
001019402 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central$$d2023-10-26
001019402 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2023-10-26
001019402 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Anonymous peer review$$d2023-04-12T14:57:05Z
001019402 920__ $$lyes
001019402 9201_ $$0I:(DE-Juel1)IBI-6-20200312$$kIBI-6$$lZelluläre Strukturbiologie$$x0
001019402 9801_ $$aFullTexts
001019402 980__ $$ajournal
001019402 980__ $$aVDB
001019402 980__ $$aUNRESTRICTED
001019402 980__ $$aI:(DE-Juel1)IBI-6-20200312
001019402 981__ $$aI:(DE-Juel1)ER-C-3-20170113