001     1019402
005     20240610120204.0
024 7 _ |a 10.3390/biom13091280
|2 doi
024 7 _ |a 10.34734/FZJ-2023-05362
|2 datacite_doi
024 7 _ |a 37759680
|2 pmid
024 7 _ |a WOS:001074347000001
|2 WOS
037 _ _ |a FZJ-2023-05362
082 _ _ |a 570
100 1 _ |a Bustorff, Nuno
|0 P:(DE-Juel1)180391
|b 0
245 _ _ |a Features of Protein Unfolding Transitions and Their Relation to Domain Topology Probed by Single-Molecule FRET
260 _ _ |a Basel
|c 2023
|b MDPI
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1702479891_27254
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a A protein fold is defined as a structural arrangement of a secondary structure in a threedimensionalspace. It would be interesting to know whether a particular fold can be assigned to certainfeatures of the corresponding folding/unfolding transitions. To understand the underlying principlesof the manifold folding transitions in more detail, single-molecule FRET is the method of choice.Taking the two-domain protein phosphoglycerate kinase (PGK) as an example, we investigateddenaturant-induced unfolded states of PGK using the above method. For this purpose, differentintramolecular distances within the two domains were measured. In addition to the known two-statetransition, a transition with a compact folding intermediate was also identified in each of the twodomains. Based on the structural homology of the domains (characterized by a Rossmann fold)and the striking similarity in the features of the measured distance changes during unfolding, clearevidence emerged that the underlying domain topology plays an important role in determining theobserved structural changes.
536 _ _ |a 5352 - Understanding the Functionality of Soft Matter and Biomolecular Systems (POF4-535)
|0 G:(DE-HGF)POF4-5352
|c POF4-535
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Fitter, Jörg
|0 P:(DE-Juel1)131961
|b 1
|e Corresponding author
773 _ _ |a 10.3390/biom13091280
|g Vol. 13, no. 9, p. 1280 -
|0 PERI:(DE-600)2701262-1
|n 9
|p 1280 -
|t Biomolecules
|v 13
|y 2023
|x 2218-273X
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/1019402/files/Features%20of%20Protein%20Unfolding.pdf
856 4 _ |y OpenAccess
|x icon
|u https://juser.fz-juelich.de/record/1019402/files/Features%20of%20Protein%20Unfolding.gif?subformat=icon
856 4 _ |y OpenAccess
|x icon-1440
|u https://juser.fz-juelich.de/record/1019402/files/Features%20of%20Protein%20Unfolding.jpg?subformat=icon-1440
856 4 _ |y OpenAccess
|x icon-180
|u https://juser.fz-juelich.de/record/1019402/files/Features%20of%20Protein%20Unfolding.jpg?subformat=icon-180
856 4 _ |y OpenAccess
|x icon-640
|u https://juser.fz-juelich.de/record/1019402/files/Features%20of%20Protein%20Unfolding.jpg?subformat=icon-640
909 C O |o oai:juser.fz-juelich.de:1019402
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)180391
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)131961
913 1 _ |a DE-HGF
|b Key Technologies
|l Materials Systems Engineering
|1 G:(DE-HGF)POF4-530
|0 G:(DE-HGF)POF4-535
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Materials Information Discovery
|9 G:(DE-HGF)POF4-5352
|x 0
914 1 _ |y 2023
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2023-10-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2023-10-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2023-10-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2023-10-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2023-10-26
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b BIOMOLECULES : 2022
|d 2023-10-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2023-04-12T14:57:05Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2023-04-12T14:57:05Z
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2023-10-26
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2023-10-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2023-10-26
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2023-10-26
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2023-10-26
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b BIOMOLECULES : 2022
|d 2023-10-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2023-10-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0320
|2 StatID
|b PubMed Central
|d 2023-10-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2023-10-26
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Anonymous peer review
|d 2023-04-12T14:57:05Z
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IBI-6-20200312
|k IBI-6
|l Zelluläre Strukturbiologie
|x 0
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IBI-6-20200312
981 _ _ |a I:(DE-Juel1)ER-C-3-20170113


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21