001019407 001__ 1019407
001019407 005__ 20231213202054.0
001019407 037__ $$aFZJ-2023-05367
001019407 041__ $$aEnglish
001019407 1001_ $$0P:(DE-Juel1)186758$$aBabamehdi, Mehdi$$b0$$ufzj
001019407 1112_ $$aSIAM-CSE$$cAmsterdam$$d2023-02-26 - 2023-03-03$$wNetherlands
001019407 245__ $$aUsing nonlinear domain decomposition as smoother in nonlinear multigrid
001019407 260__ $$c2023
001019407 3367_ $$033$$2EndNote$$aConference Paper
001019407 3367_ $$2BibTeX$$aINPROCEEDINGS
001019407 3367_ $$2DRIVER$$aconferenceObject
001019407 3367_ $$2ORCID$$aCONFERENCE_POSTER
001019407 3367_ $$2DataCite$$aOutput Types/Conference Poster
001019407 3367_ $$0PUB:(DE-HGF)24$$2PUB:(DE-HGF)$$aPoster$$bposter$$mposter$$s1702479612_10687$$xAfter Call
001019407 520__ $$aNonlinear partial differential equations frequently arise in different fields ofscience. Discretization of the nonlinear problems usually leads to large non-linear systems. Solution of such big discretized nonlinear problems needsfast, highly scalable, and parallelize solvers.Nonlinear multigrid is a well-known method for efficiently solving nonlin-ear boundary value problems. The full approximation scheme (FAS) solvesnonlinear problems on fine and coarse grids. To smooth the nonlinear prob-lem a suitable nonlinear solver is needed and since a matrix-free implemen-tation is desirable, this form of implementation of the smoother should beplausible. For this purpose, the nonlinear additive Schwarz method (NASM)seems to be an appropriate choice. NASM converges with the same rateas linear iterations applied to the linearised equation. In addition, it is inher-ently parallel and proper to be implemented in matrix-free form.We combine FAS and NASM to obtain hybrid NASM/FAS. The FAS solvesthe nonlinear problem and the NASM is the smoother of the nonlinearboundary value problem in local subdomains on each level of the multigridmethod. Within the NASM, Jacobian-Free Newton Krylov method is usedas a solver on each subdomain. We consider different nonlinear equationsin 3D space as test problems. We investigated several parameters of themethods to have a better understanding of influence of the parameters onthe efficiency of the method and its convergence rate.
001019407 536__ $$0G:(DE-HGF)POF4-5112$$a5112 - Cross-Domain Algorithms, Tools, Methods Labs (ATMLs) and Research Groups (POF4-511)$$cPOF4-511$$fPOF IV$$x0
001019407 8564_ $$uhttps://juser.fz-juelich.de/record/1019407/files/FZJ_Poster_hoch.pdf$$yRestricted
001019407 8564_ $$uhttps://juser.fz-juelich.de/record/1019407/files/FZJ_Poster_hoch.gif?subformat=icon$$xicon$$yRestricted
001019407 8564_ $$uhttps://juser.fz-juelich.de/record/1019407/files/FZJ_Poster_hoch.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
001019407 8564_ $$uhttps://juser.fz-juelich.de/record/1019407/files/FZJ_Poster_hoch.jpg?subformat=icon-180$$xicon-180$$yRestricted
001019407 8564_ $$uhttps://juser.fz-juelich.de/record/1019407/files/FZJ_Poster_hoch.jpg?subformat=icon-640$$xicon-640$$yRestricted
001019407 909CO $$ooai:juser.fz-juelich.de:1019407$$pextern4vita
001019407 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)186758$$aForschungszentrum Jülich$$b0$$kFZJ
001019407 9131_ $$0G:(DE-HGF)POF4-511$$1G:(DE-HGF)POF4-510$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5112$$aDE-HGF$$bKey Technologies$$lEngineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action$$vEnabling Computational- & Data-Intensive Science and Engineering$$x0
001019407 920__ $$lno
001019407 9801_ $$aEXTERN4VITA
001019407 980__ $$aposter
001019407 980__ $$aUSER
001019407 980__ $$aI:(DE-Juel1)JSC-20090406