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Abstract 
 

Machine learning (ML) approaches are increasingly being applied to neuroimaging data. 
Studies in neuroscience typically have to rely on a limited set of training data which may impair 
the generalizability of ML models. However, it is still unclear which kind of training sample is 
best suited to optimize generalization performance. In the present study, we systematically 
investigated the generalization performance of sex classification models trained on the 
parcelwise connectivity profile of either single samples or a compound sample containing data 
from four different datasets. Generalization performance was quantified in terms of mean 
across-sample classification accuracy and spatial consistency of accurately classifying parcels. 
Our results indicate that generalization performance of pwCs trained on single dataset 
samples is dependent on the specific test samples. Certain datasets seem to “match” in the 
sense that classifiers trained on a sample from one dataset achieved a high accuracy when 
tested on the respected other one and vice versa. The pwC trained on the compound sample 
demonstrated overall highest generalization performance for all test samples, including one 
derived from a dataset not included in building the training samples. Thus, our results indicate 
that a big and heterogenous training sample comprising data of multiple datasets is best 
suited to achieve generalizable results. 
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Introduction 
 
Machine Learning (ML) is a powerful tool to relate neuroimaging data to behavior and 
phenotypes (Genon et al., 2022; Varoquaux & Thirion 2014) and is therefore increasingly 
being employed in neuroscience applications (Jollans et al., 2019; Buch et al., 2018; Varoquaux 
et al., 2018; Kohoutova et al. 2020). Successful applications of ML approaches include the 
decoding of mental states (Haynes & Rees 2006), classification of mental disorders (Zhang et 
al. 2021; Chen et al., 2020), as well as the prediction of demographic and behavioral 
phenotypes (Smith et al. 2015; Nostro et al., 2018; Pläschke et al., 2020; Varikuti et al., 2018; 
More et al., 2023).  
 
ML models learn the feature-target relationship given a training sample. Subsequently, the 
model is applied to make predictions on previously unseen data (Dhamala et al., 2023) and 
successful generalization to independent data samples is the central goal in ML (Domingos, 
2012; Varoquaux, 2018; Chung, 2018). For example, a recent study (Weis et al., 2020) 
demonstrated successful generalization of sex prediction models based on regionally specific 
functional brain connectivity patterns, which were trained on the data of the Human 
Connectome Project (HCP, Van Essen et al., 2012, Van Essen, 2013). For this spatially specific 
approach, independent classifiers were trained on the functional brain connectivity patterns 
of parcels covering the whole brain. In this case, assessing generalization performance should 
not only consider the averaged across-sample accuracy. Rather, if the classifiers generalize 
well, the same parcels should achieve high classification accuracies during cross-validation 
(CV) and across-sample testing.  
 
Further sex classification studies (Menon & Krishnamurthy, 2019; Zhang et al., 2018; Smith et 
al., 2013), as well as other applications of ML models employed the HCP dataset to predict 
phenotypes such as task activation (Cohen et al., 2020), and individual behavioral and 
demographic scores (Smith et al., 2015; Cui & Gong, 2018) like age (Sanford et al., 2022). The 
HCP dataset is characterized by high-quality multi-modal imaging data acquired from a large 
group of healthy young adults. However, both the high quality of the brain imaging data as 
well as the narrow age range is not typical of other datasets, especially when dealing with 
clinical data (Arslan, 2018, Jansma et al., 2020; Rutten et al., 2010). This raises the question 
whether results based on the HCP data can be generalized to other datasets with different 
characteristics. Weis et al., (2020) demonstrated that sex classifiers trained on the HCP data 
generalized well to an independent subset of the HCP dataset as well as to the 1000Brains 
dataset (Caspers et al. 2014). Additional evidence from the application of such classifiers to 
data from datasets with diverse characteristics would provide even stronger evidence of 
model generalization.  
 
Especially in neuroimaging, differences between datasets may result from several different 
sources. On the one hand, participants may differ with respect to demographic characteristics, 
such as age, education, or economic status. On the other hand, data samples likely differ with 
regard to the MRI acquisition parameters and data processing. Considering these differences, 
it is so far unresolved what kind of training sample leads to good generalization performance 
across multiple test samples.  
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Various characteristics of the training data can influence the generalization performance of 
ML models (Dhamala et al. 2023). For instance, larger sample size is beneficial for 
generalization performance (Cui & Gong, 2018, Domingos, 2012). Ensuring that the training 
data is representative of the target sample is another crucial factor for achieving good 
generalization performance (Ishida, 2019, Yang et al. 2020). Furthermore, data from different 
acquisition sites are likely heterogeneous with respect to demographic characteristics, data 
acquisition, and processing parameters. Therefore, a ML model trained on such data is less 
likely to overfit. Thus, aggregating data from multiple sites should be beneficial for improving 
generalization performance. Indeed, this has been partially shown by studies concerning 
clinical applications of ML approaches (Nielsen et al, 2020; Willemink et al. 2020; Chang et al. 
2018). These results suggest that training ML models on diverse datasets covering a wide 
range of characteristics may improve the overall generalization performance. 
 
In the present study, our aim was to evaluate the generalization performance of sex classifiers 
trained on samples created from four different datasets with varying demographic 
characteristics. In addition, sex classifiers were trained on a compound sample combining data 
from all datasets to obtain a training sample with heterogeneous sample characteristics. 
Following the parcelwise approach by Weis et al. (2020), we trained independent sex 
classifiers on the resting state (RS) connectivity patterns of 436 parcels covering the whole 
brain. For each parcel, a sex classification model was built based on the individual connectivity 
profile, resulting in one classification accuracy value per parcel. This was done for each of the 
five training samples, resulting in five sets of parcelwise classifiers (pwCs). These pwCs were 
applied to test samples from the four original datasets and one dataset which was not part of 
the training samples. Then, accuracy maps, representing the spatial distribution of 
classification accuracies for each parcel were generated for CV (within-sample accuracy) and 
for application of the pwCs to the different test samples (across-sample accuracy). The 
comparison of these accuracy maps enabled us to evaluate generalization performance of 
classifiers by (i) examining the mean accuracy of all parcelwise classifiers across the 10% best 
classifying parcels and (ii) comparing the spatial location of highly classifying parcels between 
CV and across-sample test. Good generalization performance with regard to spatial 
consistency is characterized by identical parcels performing well in CV and across-sample 
testing. We hypothesized that the compound sample achieves best generalization 
performance as suggested by previous literature (Nielsen et al, 2020; Willemink et al. 2020; 
Chang et al. 2018).  
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Materials and Methods 

Data 

We employed resting state functional magnetic resonance imaging (fMRI) data of subsets of 
four large datasets to train and test sex classification models. For all datasets, we only included 
healthy subjects aged 20 years or older. Within each training sample, we matched females 
and males for age and included a similar number of women and men. The first sample, taken 
from the HCP dataset (900 subjects data release; Van Essen et al., 2012; Van Essen 2013), 
comprised 878 subjects with a mean age of 28.49 years (range: 22-37 years). The second 
sample, taken from the Brain Genomics Superstruct Project (GSP; Holmes et al., 2015) 
comprised 854 subjects with a mean age of 22.92 years (range: 21 – 35 years). The third 
sample was a subset from the Rockland Sample of the Enhanced Nathan Klein Institute (eNKI; 
Nooner et al., 2012), comprising 190 subjects with a mean age of 46.02 years (range: 20-83 
years). The fourth sample, taken from the 1000Brains dataset (Caspers et al., 2014), comprised 
1000 subjects with a mean age of 61.18 years (range: 21-85 years). This sample was included 
to examine generalization performance to an older sample. A fifth sample (“compound”) was 
constructed by combining 75% of the HCP, GSP, eNKI and 1000Brains samples. The compound 
sample comprised an age range of 20-85 years (M = 40.10, SD = 19.96 years). RS fMRI data 
from an additional dataset was included to evaluate classifiers on an additional independent 
sample. This sample comprised 370 subjects (214 females) with a mean age of 22.50 years 
(range 20-26 years) from the AOMIC dataset (Snoek et al., 2021). It was not additionally 
balanced for sex to maintain the maximum number of participants for evaluation. Data usage 
of the included datasets was approved by the Ethics Committee of the Medical Faculty of the 
Heinrich-Heine University Düsseldorf (4039, 5193, 2018-317-RetroDEuA). All data was 
collected in research projects approved by a local Review Board, for which all participants 
provided written informed consent. All experiments were performed in accordance with 
relevant guidelines and regulations. 

Data acquisition and preprocessing 

 

HCP 
The RS fMRI data of the HCP dataset were acquired on a Siemens Skyra 3T MR scanner with 
multiband echo-planar imaging with a duration of 873 seconds and the following parameters: 
72 slices; voxel size, 2 x 2 x 2 mm3; field of view (FOV), 208 x 180 mm2; matrix, 104 x 90; TR, 
720 ms; TE, 33 ms; flip angle, 52 degrees 
(https://www.humanconnectome.org/storage/app/media/documentation/s1200/HCP_S120
0_Release_Reference_Manual.pdf) Participants were instructed to lie in the scanner with eyes 
open, with a “relaxed” fixation on a white cross on a dark background and think of nothing in 
particular, and to not fall asleep (Smith et al., 2013). RS data were corrected for spatial 
distortions, head motion, B0 distortions and were registered to the T1-weighted structural 
image (Smith et al. 2013). Concatenating these transformations with the structural-to-MNI 
nonlinear warp field resulted in a single warp per time point, which was applied to the 
timeseries to achieve a single resampling in the 2mm MNI space. Afterwards, global intensity 
normalization was applied and voxels that were not part of the brain were masked out. Locally 
noisy voxels as measured by the coefficient of variation were excluded and all the data were 
regularized with 2mm Full width half maximum (FWHM) surface smoothing (Smith et al. 2013; 
Glasser et al. 2013). The temporal preprocessing included corrections and removal of 

https://www.sciencedirect.com/science/article/pii/S1053811912001954?casa_token=i1NtP4TlTyoAAAAA:Zm_oGc-_T-Mld-QeqtK0byfezQw6YUm0izwqGsOod7Gd8ABYYASnVf8zBzYz4dklbQcXmz_a2gQ
https://www.sciencedirect.com/science/article/pii/S1053811913005351?casa_token=kbH1FfDSTbwAAAAA:PQ3ShPKHxvG4A0onJLEYu0gNWP1YWFKtAS1Fl3Yl-uOPT6RmuczH1pDJcPNtU94tllLyzSEoEhU
https://www.nature.com/articles/sdata201531
https://www.frontiersin.org/articles/10.3389/fnins.2012.00152/full
https://www.frontiersin.org/articles/10.3389/fnagi.2014.00149/full
https://www.nature.com/articles/s41597-021-00870-6
https://www.humanconnectome.org/storage/app/media/documentation/s1200/HCP_S1200_Release_Reference_Manual.pdf
https://www.humanconnectome.org/storage/app/media/documentation/s1200/HCP_S1200_Release_Reference_Manual.pdf
https://www.sciencedirect.com/science/article/pii/S1053811913005338
https://www.sciencedirect.com/science/article/pii/S1053811913005338?casa_token=yJYe840tPF8AAAAA:lCEeCnF1vq633PMT4XdBFTT_m83k6ff1rJ0ERgCrwd0lOkMqRz76Zf1J3nv4XDViifcK-JRwUVs
https://www.sciencedirect.com/science/article/pii/S1053811913005338?casa_token=yJYe840tPF8AAAAA:lCEeCnF1vq633PMT4XdBFTT_m83k6ff1rJ0ERgCrwd0lOkMqRz76Zf1J3nv4XDViifcK-JRwUVs
https://www.sciencedirect.com/science/article/pii/S1053811913005053?casa_token=yF24MB2g9hMAAAAA:qTnwYbg-_Y1PKhNcn0TrEshys-vr65LEcFf_wEJuGC-AXStoc6M0Zv_9cnwRRX0yLY_WThMqBxA


 

physiological and movement artifacts by an independent component analysis (ICA) of the 
FMRIB´s X-noisifier (FIX, Salimi-Khorshidi et al., 2014). This method decomposes data into 
independent components and identifies noise components based on a variety of spatial and 
temporal features through pattern classification. 
 
GSP 
RS data were acquired on a 3T Tim Trio Scanner with a duration of 372 seconds and the 
following parameters: 47 slices; voxel size, 3 x 3 x 3 mm3; FOV read, 216 mm; TR, 3 s; TE, 30 
ms; flip angle, 85 degrees. During data acquisition, participants were instructed to lay still, stay 
awake, and keep eyes open while blinking normally 
(https://static1.squarespace.com/static/5b58b6da7106992fb15f7d50/t/5b68650d8a922db3
bb807a90/1533568270847/GSP_README_140630.pdf, Holmes et al. 2015). 
 
eNKI 
Participants in the eNKI dataset were underwent RS scanning for 650 seconds in a Siemens 
Magnetom Trio Tim sygno MR scanner with the following parameters: 38 slices; voxel size, 3 
x 3 x 3 mm3, FOV, 256 x 200mm2; TR, 2500 ms; TE, 30 ms; flip angle, 80 degree. Participants 
were instructed to keep their eyes closed, relax their minds and not to move (Betzel et al. 
2014). 
 
1000Brains 
Subjects were scanned for 660 seconds on a Siemens TRIO 3T MRI scanner with the following 
parameters: 36 slices; voxel size, 3.1 x 3.1 x 3.1 mm3; FOV, 200 x 200 mm2; matrix, 64 x 64, TR 
= 2.2 s; TE = 30 ms; flip angle, 90 degrees. During RS data acquisition, participants were 
instructed to keep their eyes closed and let the mind wander without thinking of anything in 
particular (Caspers et al. 2014).  
 
RS data of the GSP, eNKI and 1000Brains samples were preprocessed in the same way. The 
preprocessing pipeline comprised removal of noise and motion artifacts by using FIX (Salimi-
Khorshidi et al., 2014). The denoised data were further preprocessed with SPM12 (SPM12 
v6685, Wellcome Centre for Human Neuroimaging, 2018; 
https://www.fil.ion.ucl.ac.uk/spm/software/spm12/) using Matlab R2014a (Mathworks, 
Natick, MA). For each subject, the first four echo-planar-imaging (EPI) volumes were discarded 
and the remaining ones were corrected for head movement by an affine registration with two 
steps: First, the images were aligned to the first image. Second, the images were aligned to 
the mean of all volumes. The resulting mean EPI image was spatially normalized using the 
MNI152 template (Holmes et al., 1998) using the “unified segmentation” approach in order to 
take into account inter-individual differences in brain morphology (Ashburner & Friston, 
2005). After deformation application and smoothing, images were resampled to partial 
volume label image to 2x2x2mm3 and resampled using the modulated GM segment image to 
2x2x2mm3. 
 
AOMIC 
The AOMIC dataset includes two subsamples, PIOP1 and PIOP2, comprising data of healthy 
university students scanned on a Philips 3T scanner. Participants were instructed to keep their 
gaze fixated on a fixation cross on the screen and let their thoughts run freely (Snoek et al., 
2021). Both samples were acquired with a voxel size of 3 x 3 x 3 mm3 and a matrix size of 80 x 
80. While PIOP1 was acquired for 360 seconds with multi-slice acceleration, 480 volumes and 
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a 0.75 TR, PIOP2 was acquired for 480 seconds without multi-slice acceleration, 240 volumes 
and a 2s TR (further details in https://www.nature.com/articles/s41597-021-00870-
6/tables/10). Data were preprocessed using Fmriprep version 1.4.1 (Esteban et al., 2019; 
Esteban et al., 2020), a Nipype based tool for reproducible preprocessing in neuroimaging data 
(Gorgolewski et al., 2011). Data were motion corrected using mcflirt (FSLv5.0.9, (Jenkinson et 
al. 2002)) followed by distortion correction by co-registering the functional image to the 
respective T1 weighted image with inverted intensity (Huntenburg, 2014; Wang et al., 2017) 
with 6 degrees of freedom, using bbregister (FreeSurfer v6.0.1). In a following step, motion 
correction transformations, field distortion correction warp, BOLD-to-T1- weighted 
transformation and the warp from T1-weighted to MNI were concatenated and applied using 
antsApplyTransforms (ANTs v2.1.0.) using Lanczos interpolation (Snoek et al., 2021). 
  

Connectome extraction 

Following the parcelwise approach by Weis et al. (2020), individual RS connectomes were 
extracted based on 400 cortical parcels of the Schaefer Atlas (Schaefer et al. 2018), and 36 
subcortical parcels of the Brainnetome Atlas (Fan et al., 2016). Each parcel's time series was 
cleaned by excluding variance that could be explained by mean white matter and 
cerebrospinal fluid signal (Satterthwaite et al., 2013). Data was not further cleaned for motion 
related variance as this variance was already removed during FIX preprocessing. For each of 
the 436 parcels, the activation time series was computed as the mean of all voxel time courses 
within that parcel. Then, for each parcel, pairwise Pearson correlations were computed 
between the parcel’s time series and those of all other 435 remaining parcels, representing 
the individual RS functional connectivity (RSFC) profile of the parcel.  
 

Parcelwise sex classification 

Sex classification models were trained based on the individual multivariate RSFC profile of 
each parcel, resulting in a set of 436 pwC (Weis et al., 2020). All models were built using 
support vector machine (SVM) classifiers. SVM is a supervised ML method that separates the 
data into distinct classes – males and females in case of sex classification – with the widest 
possible gap between these classes (Vapnik 1998; Boser et al., 1992; Rafi & Shaikh., 2013; 
Zhang et al., 2021). SVM models were built in Julearn 
(https://juaml.github.io/julearn/main/index.html) including a Hyperparameter search nested 
within a 10–fold CV with 5 repetitions. The parameter search included choice of kernel (linear 
vs. radial basis function (rbf) kernel) as well as the C- and gamma-parameter. Confounding 
effects of age were regressed out by removing age-related variance before training the 
classifiers. The best performing combination of hyperparameters was used for the final model 
for each individual parcel. Within-sample classification accuracy for each individual parcel was 
determined by averaging accuracies over CV folds and repetitions.  
For across-sample classification, single dataset pwCs were tested on the respective other 
three samples (sample characteristics displayed in table 1, Figure 1), while the compound 
sample pwC were tested on the remaining 25% of the HCP (n = 220, age range: 22-36), GSP (n 
= 214, age range: 21-31), eNKI (n = 48, age range: 20-75) and 1000Brains (n = 250, age range: 
22-80) sample (Table 1). Here, for computing time reasons, we restricted the choice of the 
SVM kernel to rbf (see Weis et al., 2020). Finally, generalization performance of all five pwCs 
was assessed on the AOMIC sample. All reported accuracies are balanced accuracies. 
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Statistical analyses 

 
Across-sample classification accuracy  
To statistically compare the classification accuracies achieved by each pwC on the different 
test samples, we employed independent t-tests between the different across-sample 
accuracies over all 436 parcels. To compare the performance of the different pwCs on each 

test sample, independent t-tests across all parcels were used. Significance levels were 
Bonferroni-corrected according to the number of dependent tests (10 dependent tests for 
comparing the across-sample accuracy of pwC compound on the five fest samples as well as 
for comparing the across-sample accuracies of the five pwCs on the AOMIC sample; 6 
dependent tests for all other comparisons). 
 
Consistency of highly classifying brain regions 
Previous studies have demonstrated that sex classification accuracies for models trained on 
parcelwise RSFC patterns do not achieve uniformly high performance across the whole brain 
(Weis et al. 2020; Zhang et al. 2018). Thus, we assessed generalization performance of the 
different pwCs by examining the consistency of highly classifying brain regions during CV and 
across-sample testing. Consistency was assessed by computing Dice coefficients (DSC) to 
evaluate the similarity in spatial distribution of parcels achieving certain accuracies in both CV 
and across-sample testing. This consistency was evaluated for different accuracy thresholds 
above chance (0.5 - 0.7 at 0.02 steps). For each threshold, Dice coefficients were computed as 
the number of common parcels achieving within- and across-sample accuracies above or 
equal to that threshold (p_com) multiplied by 2 and divided by the total number of parcels 
achieving a within (p_tr) or across-sample (p_te) accuracy above or equal to that accuracy 
level in CV (Dice, 1945; Sorensen, 1948).  
 

𝐷𝑆𝐶 =  
2 ∗ 𝑝_𝑐𝑜𝑚

𝑝_𝑡𝑟 + 𝑝_𝑡𝑒
 

 
To facilitate comparison of the dice score distributions between the different pwCs and test 
samples, we summarized each contribution into one score by computing a weighted mean 
(wmDice) as the average of each dice coefficient weighted by the accuracy threshold for which 
the respective dice coefficient was calculated.   
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Table 1. Sample characteristics. Depiction of sample characteristics of each sample to train 
the respective pwC. 
 

    
pwC 
HCP   pwC GSP   

pwC 
eNKI   

pwC 
1000Brain

s   pwC compound   

            

training 
sample  HCP  GSP  eNKI  

1000Brain
s  

75% of the HCP, GSP, eNKI & 
1000Brains sample  

            

sample size  878  854  190  1000  2190  

            

mean age (age 
range) years   

28.49 
(22-37)   

22.92 
(21-35)   

46.02 
(20-83)   

61.18 (21-
85)   

40.10  
(20-85)   

 

Results 

The generalization performance of pwCs trained on each of the single dataset samples (HCP, 
GSP, eNKI, & 1000Brains) and on the compound sample were compared with respect to mean 
across-sample accuracy averaged across the best 10% classifying parcels. Additionally, we 
evaluated the consistency of the spatial distribution of accurately classifying parcels between 
CV and across-sample testing.  
 
 

Training and test classification accuracies 

 

For the single samples pwCs, the mean within-sample performance across the top 10% 
classifying parcels was at a similar level for pwC GSP (66.8%), pwC eNKI (66.9%) and pwC 
1000Brains (66.3%) and ranged up to 73.5% for pwC HCP. The mean across-sample accuracies 
averaged for the top 10% classifying parcels ranged between 58.4% (for pwC HCP tested on 
AOMIC and pwC eNKI tested on 1000Brains) and 65.8% (for pwC GSP tested on eNKI). Details 
for within- and across-sample performance are reported in Table S1 and Figure 1 and Figure 
S1. Parcelwise within- and across-sample accuracies are displayed as accuracy maps in figure 
1a and the distribution of test accuracies is shown in figure 2 (red boxplots). Here, accuracy 
maps represent the spatial distribution of classification accuracies resulting from the 436 
individual ML models trained on the respective multivariate RSFC profile of each parcel. 
  



 

 

 
Figure 1. Accuracy maps and tile plots of mean accuracies of top 10% classifying parcels for pwCs trained on 
single samples.  
(a) Spatial distribution of parcelwise sex classification accuracies across the brain. Within-sample accuracies are 
depicted on and across-sample accuracies off the diagonal. Only parcels with an accuracy of 0.5 or higher are 
displayed. (b) Mean accuracies averaged across the top 10% classifying parcels for each CV- and across-sample 
prediction. 

 
Accuracy maps for the different combinations of training and test samples were compared 
using independent t-tests across the top 10% classifying parcels in each prediction (details in 
Table S2). First, we analyzed differences in classification accuracies between test samples for 
each pwC (horizontal comparisons, figure 1): For pwC HCP, testing on 1000Brains achieved 
the highest mean classification accuracy (59.8%). The averaged accuracy for this test sample 
was descriptively higher than for the GSP and significantly higher than for the eNKI and AOMIC 
test samples. PwC GSP achieved significantly higher accuracies for the eNKI test sample 
(65.8%) than for any other test sample, while pwC eNKI showed highest accuracies for the GSP 



 

test sample (60.7%). This across-sample prediction showed descriptively higher accuracies 
than pwC eNKI did for the HCP test sample and significantly higher accuracies than for the 
AOMIC and 1000Brains samples. For pwC 1000Brains, testing on the HCP showed significantly 
higher accuracies (64.8%) than testing on the eNKI, GSP and AOMIC sample. Details of all 
statistical comparisons are given in Table S2.  
 
PwC compound achieved a mean within-sample accuracy of 67.9% within the top 10% 
classifying parcels. The mean across-sample accuracies averaged across the top 10% 
classifying parcels ranged between 65.5% (pwC compound tested on AOMIC) and 74.6% (pwC 
compound tested on eNKI, details in Table S1 and Figure 2, Figure S2). 
 

 
Figure 2. Accuracy maps and tile plots of mean accuracies of top 10% classifying parcels for pwC compound.  
(a) Spatial distribution of parcelwise sex classification accuracies across the brain. Only parcels with an accuracy 
of 0.5 or higher are displayed.  
(b) Mean accuracies averaged across the top 10% classifying parcels for the CV- and across-sample prediction. 

 
Contrasting the top 10% classifying parcels in the accuracy maps of pwC compound displayed 
peaks in accuracies for the eNKI test sample (74.6%) resulting in significantly higher accuracies 
than for the remaining test samples (Figure 2 and Table S2). We also contrasted how the five 
pwCs performed on each test sample by employing independent t-tests: pwC compound 
outperformed all pwCs trained on single dataset samples for the HCP, GSP, eNKI and AOMIC 
test sample with regards to the top 10%classifying parcels in each across-sample prediction. 
Details for all statistical comparisons are shown in Table S2.  
  



 

Consistency of correctly classifying parcels 

 
Figure 2. Spatial consistency of all pwCs. For each combination of training (rows) and test sample (columns), the 
right side of each subplot (red boxplot) depicts the distribution of accuracies across all parcels (right y-axis). The 
left side of each subplot (blue barplot) shows the dice coefficients (left y-axis), representing the overlap of 
accuracy maps between CV and test at different accuracy levels (x-axis). For each accuracy-threshold, the 
respective dice coefficient was calculated as the number of similar parcels classifying above a certain accuracy-
threshold in both, respective CV and test prediction, in relation to the total number of parcels of both predictions 
classifying at this level. For each combination of pwC and test sample, the weighted mean of the dice coefficients 
(wmDice) across accuracy levels is displayed above the subplot to allow for a straightforward comparison 
between the distributions of dice coefficients. 

 
To evaluate the spatial consistency of accurately classifying parcels, we calculated the dice 
coefficient between thresholded within- and across-sample accuracy maps at different levels 
of accuracy. Here, a high dice coefficient indicates a high overlap in highly classifying parcels 
between within and across-sample predictions at a given accuracy level. The results are 
depicted in the blue bar plots in figure 2. Regarding spatial consistency within a given pwC 
(horizontal comparison in Fig 2), pwC HCP overall demonstrated relatively low spatial 
consistency while it was highest for 1000Brains (wmDice = 0.1765, all other wmDice < 0.1112). 
Spatial consistency for pwC GSP was highest for the eNKI sample (wm = 0.3103) and lowest 
for 1000Brains (wmDice = 0.1810) with spatial consistency for HCP (wmDice = 0.2407) and 
AOMIC (wmDice = 0.2607) test samples ranging in between. PwC eNKI showed overall low 
spatial consistency for the HCP, 1000Brains and AOMIC sample (wmDice: 0.1244 - 0.1523) and 
highest for the GSP sample (wmDice = 0.2072). Spatial consistency of pwC 1000Brains was 
lower for the GSP, eNKI and AOMIC test sample (wmDice: 0.1201 - 0.1853) but considerably 
higher for the HCP test sample (wmDice = 0.3159) pwC compound demonstrated relatively 
similar spatial consistency for HCP, GSP, eNKI and 1000Brains (wmDice: 0.3641 - 0.4168) and 
lower spatial consistency with the AOMIC sample (wmDice: 0.2960). Concerning the 



 

comparisons within each test sample (vertical comparisons in Fig 2) pwC compound 
demonstrated higher spatial consistency than all single dataset sample pwCs for all test 
samples. Dice coefficients for the top 10% classifying parcels are reported in figure S3. 

Discussion 
 

In the present study, we examined the generalization performance of parcelwise sex 
classification models trained on different samples. Here, we operationalized generalization 
performance in terms of both mean classification accuracy of best classifying parcels during 
across-sample testing as well as spatial consistency in highly classifying parcels between CV 
and across-sample test. Since not all parcels can be expected to achieve high classification 
accuracies (ref), we mainly focused on the top 10% classifying parcels. Overall, our results 
showed that classifiers trained on single dataset samples generalized well only for certain, but 
not for all, test samples. In contrast, classifiers trained on the compound sample 
outperformed classifiers trained on single dataset samples both in terms of accuracy and 
consistency of accurately classifying parcels.  
 
To evaluate generalization performance with respect to mean classification accuracies of the 
top 10% classifying parcels, for each pwC, we compared across-sample classification 
accuracies between the different test samples. Results indicate that certain datasets seem to 
“match” in the sense that classifiers trained on a sample from one of the datasets achieved a 
high accuracy when tested on the respective other one and vice versa. This was the case for 
HCP and 1000Brains as well as for GSP and eNKI with the former matching the results of a 
previous study (Weis et al., 2020). Based on the good across-sample performance of sex 
classifiers trained on an HCP sample on a subsample of the 1000Brains, Weis et al., (2020) 
suggested that parcelwise sex classification generalizes well between different samples. No 
additional samples from other datasets were considered in Weis et al. (2020). The present 
results extend the findings of the previous study by showing that good generalization 
performance of the HCP classifiers appears to be specific to the 1000 Brains sample. 
Generalization to samples from other datasets (GSP, eNKI and AOMIC) is, however, rather 
poor. Thus, our study demonstrates that the generalizability of pwCs trained on single dataset 
samples depends on the train-test data combination, which is in line with a previous study 
that employed sex classification based on regional homogeneity of resting state time series 
(Huf et al., 2014). The limited generalization performance of the pwCs trained on single 
dataset samples to the majority of test samples from other datasets might be attributed to 
the homogeneity of each single dataset training sample arising due to demographic factors 
such as the age range (Damoiseaux et al., 2008; Damoiseaux, 2017; Scheinost et al., 2015) as 
well as technical details such as fMRI acquisition parameters (Yu et al., 2018; Brown et al., 
2011). Homogeneous data characteristics within each dataset will result in a homogeneity of 
the feature space on which ML models are trained. Such homogeneous features might lead 
the ML model to learn dataset specific characteristics that are predictive of the target variable, 
which might not translate to other test samples, resulting in inaccurate across-sample 
predictions (Huf et al., 2014). Thus, training ML models on a single, homogenous sample may 
not be ideal to achieve a good generalization performance on diverse test samples (Huf et al., 
2014; Janssen et al., 2018; Belur Nagaraj et al., 2020; Di Tanna et al., 2020). In contrast, 
training classifiers on a combination of multiple datasets achieved significantly higher 
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accuracies for all test samples, including the sample from a dataset which was not included in 
the compound training sample. The increased generalization performance might be 
attributable to the heterogeneity of data characteristics included in a training sample created 
from various datasets. This heterogeneity likely enables the model to learn patterns that do 
not rely on specific sample characteristics, but actually capture the underlying relationship 
between features and target, enabling the model to generalize better, even to data from 
datasets that were not included in training. Thus, training on a compound sample is preferable 
to training on single dataset samples (Huf et al., 2014; Chang et al., 2018; Willemink et al., 
2020).  
 

The parcelwise classification approach allowed us to investigate generalization performance 
not only in terms of accuracy but also with respect to the spatial distribution of accurately 
classifying parcels. To quantify the overlap of accurately classifying parcels between CV and 
across-sample test, we computed dice coefficients between within- and across sample 
accuracy maps at different accuracy thresholds. We observed a pattern similar to the one 
found for classification accuracies, with the train-test pairing of HCP and 1000Brains and GSP 
and eNKI, respectively, showing highest spatial consistency, relative to other combinations. 
Thus, also when considering spatial consistency, generalization performance depended on 
specific pairing of training and test datasets. For pwCs trained on single samples, training 
sample characteristics appeared to be the most important factor in driving generalization 
performance across test samples. In contrast, pwC compound achieved superior spatial 
consistency across all test samples, as compared to pwCs trained on single samples. Thus, the 
classifiers trained on the compound sample achieved both higher classification accuracies as 
well as more consistency in accurately classifying parcels as opposed to the classifiers trained 
on single dataset samples. Altogether, the high generalization performance for pwC 
compound can likely be attributed to the heterogeneity in the compound sample which was 
achieved by combining multiple samples for training. These findings match results of previous 
studies (Huf et al., 2014; Chang et al., 2018; Nielsen et al., 2020; Willemink et al., 2020). 
 
Overall, the aggregation of multiple samples in pwC compound for training sex classifiers 
resulted in superior generalization performance. Firstly, the classification accuracies were 
comparable between CV and the different across-sample test classifications. Secondly, highly 
classifying parcels overlapped to a large degree between training and and test. The overall 
high generalization performance of pwC compound across all test samples could be attributed 
to several possible explanations: first, the compound sample is more than twice as large as 
compared to any of the single dataset samples. Such high sample size has been shown to be 
beneficial for generalization (Cui & Gong, 2018, Domingos 2012, Ishida, 2019, Yang et al. 
2020). However, sample size alone is likely not sufficient to explain the high generalization 
performance. For instance, the eNKI sample consists of only 190 participants, but the 
classifiers trained on this sample achieved better generalization performance than those 
trained on the HCP sample, which included 878 participants. A second explanation for the 
good performance of pwC compound may lie in the heterogenous nature of its training sample 
as discussed above. Having the different samples represented within the compound sample 
may have allowed the classifiers to classify sex based on sample-unspecific information. 
Another potential explanation is that the training sample of pwC compound partially consists 
of data from datasets on which we evaluated the test performance. In general, training on 
data that is representative of the test data typically results in an increased generalization 
performance (Chung et al., 2018). In contrast to pwC compound, CV and across sample test 
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performances differed considerably for pwCs trained on single dataset samples. This lack of 
generalization performance was especially apparent for pwC HCP which showed a rather high 
performance during CV in combination with the lowest generalization performance both with 
respect to accuracy and spatial consistency. While homogeneity of a data sample has been 
argued to lead to high CV classification accuracy (Huf et al., 2014), sample characteristics such 
as the age range were comparable between HCP and the GSP sample, with the latter 
outperforming HCP in generalization performance. Thus, the comparably poor performance 
of classifiers trained on the HCP sample may be partially attributed to sample homogeneity 
but also to other factors such as the differences in preprocessing pipelines. For the HCP 
sample, connectome extraction was based on the minimally preprocessed version of the data. 
The eNKI, GSP and 1000Brains samples were preprocessed using the same pipeline in SPM12, 
while the AOMIC sample was preprocessed using fMRIprep. Given that comparative 
performance evaluation of fMRI data is sensitive to preprocessing decisions (Bhagwat et al., 
2021), it is likely that this difference in preprocessing may contribute to the poor 
generalization performance of pwC HCP when tested on the other single samples. 
Furthermore, the high within-sample accuracy coupled with the lack of generalization 
performance may also indicate an overfitting effect of pwC HCP during training (Domingos, 
2012; Cui & Gong, 2018). Altogether, our results highlight the importance of a heterogenous, 
diverse, and representative data composition for training ML models (Gong et al., 2019; Li et 
al., 2022; Dhamala et al., 2023), which can be achieved by combining data from multiple sites 
and datasets (Nielsen et al., 2020; Willemink et al., 2020; Chang et al., 2018). By minimizing 
sample-specific biases, we can aim for maximizing the generalizability of ML models.  
 

Limitations 

The present results consistently demonstrated the superior generalizability of sex classifiers 
trained on a compound sample as compared to those trained on single dataset samples, but 
they come with some limitations. First of all, the high spatial consistency of pwC compound 
might partially be attributed to the generally higher accuracy of the across-sample predictions. 
Dice coefficients across the top 10% classifying parcels showed a more differentiated pattern. 
Here, pwC compound did not always outperform pwCs trained on single samples. 
Another limitation in the present study is that, while we accounted for age as a potential 
confound during training of the classifiers, there might be other confounds that were not 
considered. For example, we did not control for structural variables such as brain size, which 
have been reported to influence brain functions (Batista-García-Ramó, K., & Fernández-
Verdecia, C. I., 2018) and RS brain connectivity in particular (Zhang et al. ,2018). Thus, in 
principle, different distributions of brain size within the different samples might have 
influenced the present results. However, Weis et al. (2020) demonstrated that at least with 
their training sample, classification based on RS connectivity was not systematically influenced 
by brain size. Still, there might be other demographic variables which differ between samples 
and might influence classification accuracies (Sripada et al., 2021; Mehrabi et al., 2021; Li et 
al., 2022).  
Another factor which has not been considered in the present analyses are fluctuating sex 
hormones, which have been shown to influence functional brain connectivity in RS (Weis et 
al., 2019; Arélin et al. 2015; Haraguchi et al. 2021). These dynamic changes in female and male 
connectivity patterns (Ewen & Milner, 2017; Coenjaerts et al., 2023; Kogler et al., 2016) will 
likely influence overall sex classification accuracies. However, unfortunately, most publicly 
available datasets do not provide information on hormone levels, making it impossible to 
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consider these variations in the analyses. Future large-scale studies should include hormone 
levels in data acquisition, enabling model training on a combination of multiple independent 
datasets with well characterized phenotypes to achieve most accurate results. 

Conclusion 

The present results show that parcelwise sex classification models generalize best when 
trained on a compound sample including data with different demographic and data 
acquisition characteristics. Our results demonstrate that a large and heterogenous training 
sample including multiple datasets is best suited to achieve accurate generalization 
performance. This observation carries practical implications for future neuroimaging studies 
employing ML models for generalizable predictions. 
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