001     1019420
005     20231220201929.0
024 7 _ |a 10.1103/PhysRevE.108.044302
|2 doi
024 7 _ |a 2470-0045
|2 ISSN
024 7 _ |a 2470-0061
|2 ISSN
024 7 _ |a 1063-651X
|2 ISSN
024 7 _ |a 1095-3787
|2 ISSN
024 7 _ |a 1538-4519
|2 ISSN
024 7 _ |a 1539-3755
|2 ISSN
024 7 _ |a 1550-2376
|2 ISSN
024 7 _ |a 2470-0053
|2 ISSN
024 7 _ |a 10.34734/FZJ-2023-05377
|2 datacite_doi
037 _ _ |a FZJ-2023-05377
082 _ _ |a 530
100 1 _ |a Dahlmanns, Matthias
|0 P:(DE-Juel1)180231
|b 0
245 _ _ |a Optimizing the geometry of transportation networks in the presence of congestion
260 _ _ |a Woodbury, NY
|c 2023
|b Inst.
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1703071586_18288
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Urban transport systems are gaining in importance, as an increasing share of the global population lives in cities and mobility-based carbon emissions must be reduced to mitigate climate change and improve air quality and citizens' health. As a result, public transport systems are prone to congestion, raising the question of how to optimize them to cope with this challenge. In this paper, we analyze the optimal design of urban transport networks to minimize the average travel time in monocentric as well as in polycentric cities. We suggest an elementary model for congestion and introduce a numerical method to determine the optimal shape among a set of predefined geometries considering different models for the behavior of individual travelers. We map out the optimal shape of fundamental network geometries with a focus on the impact of congestion.
536 _ _ |a 1112 - Societally Feasible Transformation Pathways (POF4-111)
|0 G:(DE-HGF)POF4-1112
|c POF4-111
|f POF IV
|x 0
536 _ _ |a CoNDyNet 2 - Kollektive Nichtlineare Dynamik Komplexer Stromnetze (BMBF-03EK3055B)
|0 G:(DE-JUEL1)BMBF-03EK3055B
|c BMBF-03EK3055B
|x 1
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Kaiser, Franz
|0 P:(DE-Juel1)176610
|b 1
700 1 _ |a Witthaut, Dirk
|0 P:(DE-Juel1)162277
|b 2
|e Corresponding author
773 _ _ |a 10.1103/PhysRevE.108.044302
|g Vol. 108, no. 4, p. 044302
|0 PERI:(DE-600)2844562-4
|n 4
|p 044302
|t Physical review / E
|v 108
|y 2023
|x 2470-0045
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/1019420/files/PhysRevE.108.044302.pdf
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/1019420/files/dahlmanns_optimal_geometry_paper.pdf
856 4 _ |y OpenAccess
|x icon
|u https://juser.fz-juelich.de/record/1019420/files/dahlmanns_optimal_geometry_paper.gif?subformat=icon
856 4 _ |y OpenAccess
|x icon-1440
|u https://juser.fz-juelich.de/record/1019420/files/dahlmanns_optimal_geometry_paper.jpg?subformat=icon-1440
856 4 _ |y OpenAccess
|x icon-180
|u https://juser.fz-juelich.de/record/1019420/files/dahlmanns_optimal_geometry_paper.jpg?subformat=icon-180
856 4 _ |y OpenAccess
|x icon-640
|u https://juser.fz-juelich.de/record/1019420/files/dahlmanns_optimal_geometry_paper.jpg?subformat=icon-640
856 4 _ |y OpenAccess
|x icon
|u https://juser.fz-juelich.de/record/1019420/files/PhysRevE.108.044302.gif?subformat=icon
856 4 _ |y OpenAccess
|x icon-1440
|u https://juser.fz-juelich.de/record/1019420/files/PhysRevE.108.044302.jpg?subformat=icon-1440
856 4 _ |y OpenAccess
|x icon-180
|u https://juser.fz-juelich.de/record/1019420/files/PhysRevE.108.044302.jpg?subformat=icon-180
856 4 _ |y OpenAccess
|x icon-640
|u https://juser.fz-juelich.de/record/1019420/files/PhysRevE.108.044302.jpg?subformat=icon-640
909 C O |o oai:juser.fz-juelich.de:1019420
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)162277
913 1 _ |a DE-HGF
|b Forschungsbereich Energie
|l Energiesystemdesign (ESD)
|1 G:(DE-HGF)POF4-110
|0 G:(DE-HGF)POF4-111
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-100
|4 G:(DE-HGF)POF
|v Energiesystemtransformation
|9 G:(DE-HGF)POF4-1112
|x 0
914 1 _ |y 2023
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2023-08-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2023-08-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1230
|2 StatID
|b Current Contents - Electronics and Telecommunications Collection
|d 2023-08-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2023-08-29
915 _ _ |a American Physical Society Transfer of Copyright Agreement
|0 LIC:(DE-HGF)APS-112012
|2 HGFVOC
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b PHYS REV E : 2022
|d 2023-08-29
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2023-08-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2023-08-29
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2023-08-29
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2023-08-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2023-08-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2023-08-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2023-08-29
920 _ _ |l no
920 1 _ |0 I:(DE-Juel1)IEK-STE-20101013
|k IEK-STE
|l Systemforschung und Technologische Entwicklung
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-STE-20101013
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21