Optimising the geometry of transportation networks in the presence of congestion
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Urban transport systems are gaining in importance, as an increasing share of the global population
lives in cities and mobility-based carbon emissions must be reduced to mitigate climate change
and improve air quality and citizens’ health. As a result, public transport systems are prone to
congestion, raising the question of how to optimise them to cope with this challenge. In this paper,
we analyse the optimal design of urban transport networks to minimise the average travel time in
monocentric as well as in polycentric cities. We suggest an elementary model for congestion and
introduce a numerical method to determine the optimal shape among a set of predefined geometries
considering different models for the behaviour of individual travellers. We map out the optimal
shape of fundamental network geometries with a focus on the impact of congestion.

I. INTRODUCTION

The structure and design of optimal transportation
networks plays an important role throughout different
disciplines, ranging from biological systems [1-3] to man-
made networks such as hydraulic networks [4, 5], power
grids [6] and urban transportation systems [7, 8]. The de-
sign of a transportation network is governed by the task it
is supposed to perform, e.g. minimising the dissipation,
minimising the cost to build the network or minimising
the averaged travel time.

Real-world supply and transportation networks display
a variety of shapes depending on their history, their task
and their surroundings [9-11]. For example, in the case of
urban transport systems, the design of the network may
depend on the city size and the degree to which cities are
historically grown or centrally planned [12]. Although
most of them have grown over decades and were built in
several small steps, one observes several patterns which
occur frequently in various cities and have been analysed
using different topological indicators [13-16]. Building an
efficient urban transportation network becomes increas-
ingly important to reduce individual traffic which leads
to congestion, high emission of green house gases [17] and
adverse effects on air quality and citizens’ health [18].

Congestion is a central topic in traffic research and
planning. Empiric and numerical studies of road traffic
show how vehicle velocities decrease with density up to a
complete traffic jam, which is commonly summarised in
the fundamental diagram of traffic flow [19, 20]. Methods
to manage or optimise traffic flows in a given network are
widely studied in the literature, see, e.g., [21] for a review.
Congestion effects in public transportation networks have
received an increased interest in recent years [22], where
it affects both travel times [23] and the user comfort [24].

A variety of models has been developed to analyse
and optimise the structure of transportation networks,
including traffic networks [25-27] as well as other types
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of technological or biological networks [1-6]. Fundamen-
tal results have been obtained for the elementary case
of uncongested networks, but empirical studies reveal a
growing importance of congestion [28]. Empirical results
on how congestion shapes the shape of cities were pre-
sented in [11]. Abstract network models that explore the
impact of congestion on the optimal structure were in-
troduced in [29, 30].

In this paper, we study the impact of congestion on the
optimal shape of transportation networks [26]. We fo-
cus on three fundamental geometries that are frequently
observed in subway or tram networks. Exemplary real
world networks and the corresponding regularised geome-
tries are shown in Fig. 1: Starting with a regular star
shape (e.g. Saint Petersburg metro), we extend the net-
work by allowing for two additional geometrical features
that occur frequently in subway or tram networks: a cy-
cle around the city centre (e.g. Moscow, Paris) and the
branching of tracks in the outskirts (e.g. Hanover). For
each geometry, we then optimise the network structure
to minimise the travel time from the city to its centre for
three radially symmetric models of the population den-
sities as sketched in Fig. 1d. Finally, we map out the
optimal geometry as a function of the available resources
and the importance of congestion and analyse the tran-
sitions between different optimal shapes.

Our work builds on a previous article by Aldous &
Barthelemy, which addressed the corresponding problem
in the absence of congestion [26]. We introduce a ver-
satile numerical method to determine travel time in the
presence of congestion and thus choose the best network.
Furthermore, we extend the investigation to polycentric
cities and study two central properties of supply net-
works: the occurrence of loops or circle lines and the
branching of tracks.

II. METHODS

The central objective of this article is the structure of
optimal transportation networks: Given a limited bud-
get, what is the optimal shape of the network such that
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Figure 1. Structural patterns in urban transport networks. The geometries of public transport networks feature a large variety
of structural elements leading to very individual shapes. However, some elementary patterns can frequently be observed. In
this paper, we discuss the optimal shape of three of these fundamental patterns: (a) The shape of the Saint Petersburg metro
is an example for a simple star network where several straight lines cross each other only in the city centre. This topology can
be idealised to a regular star with n isotropical branches of length l,. (b) The Moscow metro network features in addition a
loop track around the city centre (red). In this paper, we thus secondly investigate a regular star extended by a concentric
loop with radius r;. (c¢) The Hanover tram network is a typical example for branching in the outskirts of the city. To study
this type of geometries, we thirdly consider a star network where each branch splits at a distance /1 from the city centre into
two subbranches of length l> which span an angle a.. (d) We study the optimal geometries for three different radial symmetric
population density distributions: a homogeneous disk, a Gaussian density and an exponential density. Each red dot represents
an inhabitant, which are randomly distributed according to the respective density function. The black dot marks the city

centre. Map data based on OpenStreetMap [31].

the overall travel time is minimised? In the following, we
will formalise this optimisation problem and introduce
several key methods to solve it.

A. The objective function

Consider a city that is modelled as a two dimensional
area, such that each point in the city can be described
by a vector in the plane x = (z1,22)" € R?. We assume
that the population density in the city is described by the
function p(x) and that all inhabitants want to travel from
their home place to other places, which are described
by a distribution of destinations p4(y|x). We may then
calculate the average travel time 7 for all journeys in
the whole city by integrating over the destination and
population densities

= /dxdyr(x,y) p(x) pa(y|x) , (1)

where 7(x,y) is the travel time between two points x
and y. This expression for the average travel time 7 is
the central objective to be minimised. The solution of
this optimisation problem depends on the properties of
the city (via the functions p(x) and p4(y|x)) as well as
the methods of transportation that determine 7(x,y).
In particular, we assume that the resources are limited,
which is quantified by an upper bound to the total net-
work length L. Hence, we will evaluate the optimal net-
work geometry as a function of the total network length
L throughout this article.

Cities and their spatial structures are complex systems
that are subjects to ongoing research [32]. In classical
urban economics, a fundamental approach to study cities
is the monocentric model [33, 34], which assumes that
most of the economic activities are concentrated inside a
small area in the city centre, the central business district
(CBD). We therefore focus the first part of the analysis
on this fundamental city model. In the second part, we



generalise the analysis for non-monocentric cities as many
cities reveal a decentralised and more complex spatial
organisation [35-38].

Using the model of a monocentric city, we assume that
most travellers want to go to the CBD and travellers seek-
ing to reach other locations can be neglected. For sim-
plicity, we assume the CBD to be point like and located
in the origin 0 of the coordinate system. The distribu-
tion of densities then reads pq(y|x) = d(y). Imposing pq
into (1), the average travel time for a monocentric city
becomes

T= /dx 7(x,0) p(x) . (2)

Thus, it remains to minimise the average time-like dis-
tance to centre 7(x,0) for each traveller.

B. The average travel time in multimodal traffic networks

The average travel time 7 is essentially determined by
the available modes of transport and their velocities. In
this article, we assume that there are two modes of trans-
ports: People can either walk or use a transportation net-
work such as a subway network. Typically, people will
have to use both modes of transport, first walking to the
network, then travelling along the network and then even-
tually walking again. Hence, the travelling time 7(x,y)
is the sum of the travelling time along both modes which
we will now discuss in detail.

First, people can walk in the plane between any two
points with a constant velocity v,,, which we set to 1
in appropriate units. Assuming that people can walk
directly and that no congestion applies here, the walking
time between two points x and y is simply given by ||x —
¥||/vw, where || - | denotes the euclidean distance.

Second, people may choose a transportation network,
for example a subway network. This mode is typically
faster than walking but also longer. We assume that
travellers seek to minimise the total travel time 7, which
is obtained by summing up the travel time along the path
on the network.

In this article, we are especially interested in the im-
pact of congestion within the transportation network on
the average travel time 7 and the optimal network struc-
ture. Congestion is taken into account by assuming that
the travel time 7; along a link [ increases monotonically
with the respective flow Fj. In particular, we assume a
linear relation

T(F) = (a+ bF)d; , (3)

where d; is the length of link [ and b a congestion pa-
rameter that is discussed in detail below. The parameter
a = 1/vy is the inverse of the free-flow velocity vy, i.e. the
velocity in the limit F; — 0. For a subway network, a
typical value for a is a =~ 1/8, assuming v,, &~ 5km/h
and vg &~ 40km/h. Throughout this article, we thus use
a=1/8.

The congestion parameter b describes how strongly the
flow Fj increases the physical or equivalent travel time
along a link /. It thus measures how susceptible the net-
work is to congestion induced delays. The impact of con-
gestion vastly differs between cities and times of the day
(for example, rush hour vs. night). We thus keep b as a
free parameter and show results as a function of b € [0, 4]
in units of v, over the flow density normalised by the
city population. To get an impression of the meaning of
this parameter, consider Eq. (3): The ratio a/b gives the
amount of people that need to travel along a single line
to double the travel time. For ¢ = 1/8 and b = 4, we
find that the travel time along a line is doubled when
approximately 3 % of the city population take this line.

Before we proceed, we briefly comment on the fun-
damentals of the congestion model used in this study.
Congestion effects are intensively studied for road traf-
fic, where different functional relations 7;(F;) have been
used [39, 40]. We can interpret Eq. (3) as a generic Tay-
lor expansion of these functions up to linear order. We
note that our optimisation model can easily be adapted
to other congestion models by replacing the linear rela-
tion by any other function of 7;(F}). Congestion is also
important in public transportation networks [22], where
it can affect routing decisions in two ways. First, conges-
tion can increase the physical travel times due to denied
boarding or irregular vehicle arrivals [23]. Second, over-
crowding reduces the comfort and thus the effective util-
ity of travellers, which may choose alternative routes or
modes of transportation [23, 24, 41]. Notably, the effect
of discomfort has been quantified in terms of an equiva-
lent increase of travel times in empiric studies [42], using
a linear functional relationship as in Eq. (3).

Once we fixed the traffic flow model, it remains to de-
termine for each traveller the stations where he enters and
leaves the network. In the main part of the manuscript
we assume a “lazy traveller” model, where each traveller
uses the station that is next to his starting point and
destination, respectively, to minimise the length of his
walking path. Other routing strategies are discussed and
evaluated in the appendix A. We find that that the re-
sults are very similar such that we focus on one strategy
in the main text.

C. Numerical optimisation

To solve the integral in (2) for complex city and net-
work shapes, we developed a versatile method that eval-
uates the average travel time 7 using a discretisation
of both the network, the starting points and the des-
tinations. In particular, the solver proceeds as follows
(cf. Fig. 2):

1. Draw N starting points at random according to the
population density p(x).

2. Place destinations according to the current model
of the city structure by drawing at random from



Figure 2. Main steps of the simulation scheme. (a) The origin
and destination of each traveller (red diamonds) is drawn at
random from the distributions p(x) and pq(y|x). (b) The net-
work (black lines) is initialised using one of the three geome-
tries shown in Fig. 1 and stations (blue disks) are placed along
the network. (c) The traveller chooses a path (red line) from
origin to destination according to a specified routing strategy.
Finally the travel time is computed taking into account the
effect of congestion, and summed up over all travellers.

the distribution pg(y|x).

3. Add stations for entry and exit to a given net-
work. Place one station in the centre (blue cir-
cle in Fig. 1b). Proceed outwards on the radial
branches and place stations in intervals of length
Al. Add one additional station at the end of the
radial branches. If the network contains a loop or
branches, a station is added at each crossing point.
Further stations are added along a loop such that
their mutual distances are equal and as close to Al
as possible.

4. Routing: Compute the optimal path to the desti-
nation for each starting point according to the cor-
responding routing strategies. Travellers can only
access or leave the network at a station. Thus, we
seek the station for each traveller where they enter
and leave the network.

5. Compute the flow F; and the resulting travel time
71(F}) for every segment [ of the network, that is
a connection between neighbouring stations. The
flow Fj is directly proportional to the number of
travellers using this segment of the network.

6. Sum up the travelling times for each starting point
to obtain 7 = 7, + 75. While the average walking
time 7, equals the Euclidean distance from each
starting point to its access station of the network
plus the distance from the exit station to the des-
tination in appropriate units. The average travel

time 7, inside the network, is the sum of the travel
time 7; for each segment [ of the network multiplied
with the local flow Fj.

Further details of the numerical solver are described in
appendix C. Throughout the paper, we use Al = 0.05rq,
which corresponds to a station distance Al ~ 500m for
a city of size rg &~ 10 km.

We note that all users individually compute an op-
timal path. Traffic research generally distinguishes be-
tween user equilibrium traffic and system optimal traffic,
which do not necessarily coincide [43]. The computa-
tion is substantially complicated when stochastic fluctu-
ations or traffic information is taken into account [43, 44].
Furthermore, we note that in real public transportation
networks stations are typically not placed at a constant
distance but locations are adapted to the demand. The
optimal placement of stations is beyond the scope of this

paper.

D. Population densities

As the optimal network shape depends on the distri-
bution of the population in the city, we performed the
optimisation for three different radial symmetric popula-
tion density functions p(r) as shown in Fig. 1d:

1. a compact homogeneous disk with a constant den-
sity up to a distance ro from the city centre with
Phom (1) = po ©(rg — 1), where O denotes the Heav-
iside step function.

2. a  Gaussian density with  pgauss() =
poexp(—r?/r¢), where a small part of th
population is located further away from the city

centre and

3. an exponential density with = pexp(r) =
poexp(—r/rg) which yields a widely spread
population.

The prefactor pg is chosen such that the overall pop-
ulation is normalised to [ p(r)dr = 1. The factor rg
classifies the typical scale of the city. Throughout this
manuscript, we set 1o = 1 and express all lengths in
units of this parameter. For real cities, the value of rq
typically lays in the order of a few kilometres. We note
that the exponential distribution is commonly regarded
as the best model for the population density of a city,
based on both empiric investigations and theoretic eco-
nomic models [45].

E. Travel time without a network

To quantify the benefits of a transportation network,
we compare the average travel time to the case without
any transportation network.



In a monocentric city without a transportation net-
work, we have 7(x,0) = ||x||/v, and the integral in (2)
can be evaluated in closed form for the three different
models of the population density

00 %ro homogeneous disk
0 = 271/ drr? p(r) =< 2rp Gaussian
0 5To exponential
(4)
The ratio 7 = 7/79 € [0,1] is the reduction of the av-
erage travel time by the network and thus quantify its
effectiveness. We therefore use 7 as a measure of net-

work performance throughout this paper.

III. RESULTS
A. Optimal shape of a regular star network

We first analyse the optimal geometry of a regular star
network without loops and branching. The Saint Peters-
burg metro is an example for such a network as visualised
in Fig. la. The geometry is optimised by choosing the
number of branches n such that, for fixed total length
L of the network and congestion parameter b, the aver-
aged travel time 7 assumes its minimum. The results are
plotted in Fig. 3 over the network length L.

As expected, both the optimal number of branches n*
(Fig. 3a-c) and the corresponding branch length [ =
L/n* (Fig. 3d-f) increase with the amount of available
resources L. The optimal length [} increases rapidly at
first and then saturates, where the saturation level differs
strongly for three models of the population density p(x).
In the homogeneous disk model, all travellers start at a
distance below rg such that a track outside this radius
will not be used. Hence, the optimal length [} converges
to 7o from below. In the Gaussian model, the population
density drops rapidly for r» > ry such that [} saturates
for values slightly above 1. In the exponential model, the
population density decreases much slower. Hence, [} also
saturates slower and at higher values. In contrast the
optimal number of branches n* does not saturate and
grows almost proportionally with L. This implies that,
with limited resources, one should first invest in the elon-
gation of existing lines and only then invest into building
new lines. In the following, we will mostly restrict our
analysis to one population density for the sake of clarity.

When varying the congestion parameter b, we find that
n* increases with b and, consequently, /; decreases. Since
a growing congestion adds a penalty for strong flows on
single branches, it is reasonable that in the presence of
congestion more and shorter branches are preferred over
fewer longer ones. Notably, congestion in real networks
depends also on the frequency and capacity of trains,
which is assumed to be constant in the current model.
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Figure 3. Impact of congestion on optimal star geometries.
We plot the optimal parameters for a regular star network
(cf. Fig. 1a) over the network length L for different values of
the congestion parameter b (colour code): (a)-(c): The opti-
mal number of branches n*, (d)-(f): the corresponding branch
length Iy = L/n*, (g)-(i): the optimal averaged travel time
7*. We use the “lazy traveller” model for routing and compare
three different models of the population density (cf. Fig. 1d).
We find that the optimal branch length Ij saturates depend-
ing on the population density model. Congestion favours more
and shorter branches over fewer and longer ones.

B. Benefit-cost ratio for a regular star

In most applications, not only the optimal shape of
the network needs to be determined but the benefit-cost
ratio must also be evaluated to decide whether an invest-
ment is worth it. We assume that the construction costs
are proportional to the length L of the transportation
network and define the benefit as the reduction of the
optimum averaged travel time 7*. The marginal

B dr*

o(L) =~ )

then gives the benefit-cost ratio for enlarging the net-
work. The minimal averaged travel time 7* is plotted in
Fig. 3g-i in units of the averaged travel time in absence of
the network 79. The corresponding benefit-cost ratio (5)
is shown in Fig. 4 for the Gaussian population density.
For small networks, we find a high benefit-cost ratio
while this value decreases approximately exponentially
with growing networks, i.e. the longer the network, the
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Figure 4. Cost benefit ratio for network expansion. The cost
benefit ratio g(L) = —dr*/dL for an optimal star generally
network decreases with the network length L. In the presence
of congestion, g(L) is smaller for short network, but decreases
slower with increasing L. Hence, extending the network be-
comes increasingly beneficial with higher levels of congestion,
i.e. g(L) increases with b, when the network is already large
(L > ro). We use the Gaussian population density model and
the “lazy traveller” model.

less benefit we get from adding a unit length to the net-
work. Considering congestion, we find that, with L fixed,
7* grows with the congestion parameter b as a conse-
quence of the reduction of speed within the network due
to congestion. Therefore, the benefit-cost ratio g(L) is
lowered in the presence of congestion for short networks.
In the case of long networks, however, we find that the
benefit-cost ratio is increased by b. Nevertheless, the to-
tal benefit, i.e. the value of 7*, is always lower for stronger
congestion (cf. Fig. 3g-i). Thus, when building a network
from scratch, the presence of congestion always lowers the
benefit for a given investment. On the other hand, if an
existing network should be enlarged, congestion might
even increase the benefit for a given investment.

C. Optimal loop radius

In the next step, we investigate a modification of the
simple star network by adding a loop track around the
city centre as sketched in Fig. 1b which is commonly ob-
served in real public transportation networks such as the
Moscow metro, the Paris metro and the Cologne tram
network. We use the numerical approach introduced in
the Sec. II to determine the averaged travel time 7. A
regular star network with a loop is parametrised by two
quantities: the number of branches n and the radius of
the loop r;. Given the total length of the network L, the
branch length [, is then determined by

L—2
L=nly+2mr = zb:Tml. (6)

To find the optimal values of the geometrical parameters
n* and 7}, we have scanned the parameter space and se-
lected the values which minimise 7. As before, we analyse
the results in dependence of the available resources L and
the congestion parameter b.

The first important finding is that a pure star network
is always superior to a loopy network for given resources
L and a monocentric city. When optimising over both n
and r;, we always find the optimal loop radius r} = 0.
This result is a direct consequence of the specific opti-
misation problem considered in this paper: All travellers
want to go to the city centre, such that loopy lines ori-
ented orthogonal to this direction are not present in an
optimal network. Many real public transportation net-
works do however feature loops to facilitate travel be-
tween other positions than the city centre, cf. Sec. IITE.

Nevertheless, when considering n to be fixed we find
for certain parameters a finite value for the optimal loop
radius. Thus, if the number of branches n is fixed, there
are parameter settings where including a loop into the
network becomes beneficial. Such a situation can occur
in practical applications where the geographical situation
or the structure of the city might bias the choice of n
but also where a star shaped network is already present
and space for further branches is not available. Then
the question arises if the budget should be fully invested
to extend the existing branches or if a loop should be
established.

We now further investigate this scenario and fix n = 4
in the following. Furthermore, we focus on the Gaussian
population density and the “lazy traveller” model, as all
other models yield qualitatively similar results. The op-
timal loop radius ] as well as the corresponding branch
length [ in this case are plotted in Fig. 5a-b.

Most importantly, we find a discontinuous transition
for the optimal network shape. For short networks
L < L, the optimal structure is again a pure star with
rf = 0. As L increases above a critical value Lg:j¢, the
loopy network becomes superior and the optimal value
r; becomes non-zero. Remarkably, the transition is dis-
continuous in the sense that the optimal parameter 7}
jumps at L¢y; — i.e. the loop comes into being with a
non-zero radius. Correspondingly, the optimal branch
length [ jumps around L to a lower value as parts of
the resources are now needed for the loop. For L > L,
the optimal radius 7} increases with L to some extent and
then saturates at a value R; := limy_, r;. We note that
such a discontinous transition was already observed by
Aldous & Barthelemy [26] and rigorously established for
a different type of optimal networks by Kaiser et al. [6].

The discontinuity can be explained by plotting the av-
eraged travel time 7(r;) as a function of the loop radius
r;. For n =4 and b = 1 fixed, Fig. 5e visualises these
curves for different network lengths L around the crit-
ical network length, which is in this case L¢it ~ 471¢.
For L < L, the curves 7(r;) are strictly monotonically
increasing such that the minimum is always located at
rp = 0. At L = L¢y, the curve becomes flat around
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Figure 5. Transition from non-loopy to loopy transportation networks is discontinuous. We plot the optimal parameters for a
star with a concentric loop (cf. Fig. 1b) over the network length L for different values of the congestion parameter b using the
Gaussian population density. the number of branches n is kept fixed in the optimisation. (a) The optimal loop radius 7} jumps
at a critical network length Lyt from zero (no loop) to a finite value. (b) Correspondingly, the optimal branch length [ is also
discontinuous at this point. (c) The critical parameter Lc.it is also discontinuous when varying the congestion parameter b: For
a critical value by, of the congestion parameter Lei; jumps from a finite value to zero. (d) When considering the saturation
values of r; in the limit of large networks, denoted by Rj, we also find a sharp transition from a “low congestion” to a “high
congestion” phase around a critical congestion parameter b ry- In this case, however, the transition is much smoother compared
to the transitions in (a)-(c). (e¢) When plotting the averaged travel time 7 over the loop radius r;, we find an explanation for
the discontinuity of r;: Increasing L flattens the 7(r;) curve until at the critical length Lerit, the minimum of the curve flushes
from r; = 0 to a finite value. (f) While by scales linearly with the number of branches n, we find bz o n?s.

rp = 0. For L > L, the curves 7(r;) have a negative the low and the high congestion phase. We define the
slope around r; = 0 and a new minimum emerges for critical congestion parameters by, and bg: as the points
positive values of 7;. were the negative slopes of Lqi¢(b) and Rj(b), respec-
tively, assume their maximum. Remarkably, the critical
values do not agree and show a different scaling behaviour
with the number of branches n. We find a linear scaling
for brx x n and a non-linear scaling by, n2°® with the
number of branches n shown in Fig. 5f. The linear scal-
ing of bp;y is a consequence of the choice of units. While
we define the population of the entire city as a unit of
traveller, the total population within the catchment area
of a single branch is just 1/n of the city population. Thus,
the flow on a branch scales with 1/n and therefore the
impact of congestion do. As a consequence, the critical
value of the congestion parameters should scale with n.
The reason for the non-linear scaling of bz, is subject to
further research.

The saturation loop radius R; and the critical network
length L. are further investigated in Fig. 5c-d. Both
quantities depend on the number of branches n and the
congestion parameter b. In both cases, we can distinguish
a low and a high congestion phase with relatively stable
values and very sharp transitions from one phase to the
other. In the low congestion phase, the saturated loop
radius satisfies R; ~ rg. That is, the loop is established in
the outskirts of the city if the available resources permit.
We conclude that the prime function of the loop is to
collect travellers from locations in the outskirts far away
from the radial branches. In the high congestion regime,
the loop is established much closer to the city centre,
(Ry is much smaller than ), pointing to a very different
function of the loop.

We further investigate the transition points between
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(cf. Fig. 1c¢) over the network length L for different values of the congestion parameter b using the homogeneous population
density and fixing the number of branches to n = 5. (a,b) Contrary to the loopy topology (cf. Fig. 5), we observe continuous
transitions from one shape to another as both the optimal inner branch length [ and the optimal outer branch length I3
are smooth functions of L. (c) For long networks, the optimal opening angle a* spanned by the outer branches converges to
360°/2n as I goes to zero, i.e. the branching topology passes into a regular star with 2n branches. (d) The phase diagram
for the optimal shape at each point in the L-b plane reveals the impact of congestion: the stronger b, the smaller the critical
network lengths at with the optimal geometry switches from one shape to another. We can spot a critical value of b ~ 2.5
above which the regular star with n = 10 branches is optimal for all L. When comparing this geometry with the loopy case,

we find branching to be always superior to the loop.

D. Branching

As a second extension to the simple star network, we
consider a splitting of the branches at a distance [; from
the centre (cf. Fig. 1c). Such a pattern allows the network
to better reach the outskirts by saving costs through the
sharing of tracks close to the city centre, where neigh-
bouring branches are close to each other. The network
shape in this case is characterised by three parameters:
the number of branches n, the length of the inner branch
l; and the angle o between the split branches. The length
of the outer branches is then given by

L—nh
= =t (7)

The optimal parameter values are again determined using
the numerical method introduced in Sec. IT and a scan of
the parameter space.

When optimising over n, we again find the optimal ge-
ometry to be always a regular star. As in the preceding
section, we thus consider the scenario of a fixed number
n. We conduct the discussion here for n = 5 and the ho-
mogeneous population density. Given a certain amount

of resources L we now have the decision whether to en-
large or split the branches to better cover the outskirts of
a city. Keeping n fixed, we can distinguish three optimal
shapes:

1. n star: for small networks with L < Ly, the opti-
mal length of the outer branches [3 is zero, i.e. the
optimal shape is a regular star with n branches,

2. Branching: for intermediate networks with L; <
L < Ly, we find both [ and {5 to be non-zero,
i.e. the optimal geometry contains branching,

3. 2n star: for large networks L > Lo, the length
of the inner branch /7 diminishes and the angle
spanned by the branches becomes a = 360°/2n,
i.e. the optimal network corresponds to a regular
star with 2n branches.

The optimal geometry parameters [7, [5 and « are plot-
ted in Fig. 6a-c over the network length L for different
values of the congestion parameter b. The correspond-
ing optimal shape for each combination of L and b is
visualised in Fig. 6d. In contrast to the loopy case (cf.
Fig. 5), we observe smooth transitions from one shape
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Figure 7. Impact of congestion on the critical network length
Li. The numerical functions L1(n,b) and L2(n,b) largely
collapse when they are plotted vs. b/n4/ 3 and rescaled by
(n — 2) and (2n — 1), respectively. We thus conclude the
scaling laws given in Eq. (8).

to another in the branching case: When passing the crit-
ical network length L, the outer branch length 5 starts
growing linearly with L without any significant jumps.
Similarly, I3 linearly diminishes when approaching L.
Thus, both phase transitions are continuous in this ge-
ometry.

Considering the phase diagram in Fig. 6d, we find that
both critical values L; and Ly decrease with growing con-
gestion parameter b until they both vanish, Ly = Ly = 0,
for b =~ 2.5. Beyond these values of b, the regular star
with n = 10 branches is always superior to both other
shapes. This behaviour is consistent with our previous
results on regular star networks. For large values of b,
it is more important to distribute travellers onto many
lines to mitigate congestion than to supply the outskirts
of the city. Hence, congestion favours more and shorter
branches over fewer longer ones.

We further quantify the dependence of the critical net-
work lengths L; and Lo on the choice of n. Empirically,
we find that the impact of b scales with n~%/3 while for
b fixed, both L; and Ly scale linearly with n. We thus
deduce the scaling laws

Li(n,b) =~ (n— Elbn4/3
@0 - D .

La(n,b) =~ (2n — 1) La(b/n*/3)

with univariate functions I~/1,2. Indeed, plotting Ly /(n —
2) and Ly/(2n — 1) as a function of b/n*/? the function
largely collapse to fq’g as shown in Fig. 7. The reason
for this empirically found scaling is subject to further
research.

Considering the optimal angle a* between the outer
branches plotted in Fig. 6¢, we find that for small I, the
angle starts at a large value and smoothly decreases to
&* = 360°/2n for [; — 0. Thus, the longer the outer
branches, the closer they should lay together, but in any

case the angle between them should be larger or equal to
the angle of neighbouring branches in a 2n star.

E. Optimising transportation networks in polycentric cities

Many cities reveal complex spatial structures, that are
shaped by a variety of parameters. In particular, growing
cities typically experience a transition from a monocen-
tric to a polycentric structure, which is strongly related to
the limitation of traffic networks [37]. New subcenters or
central business districts (CBDs) emerge at a certain dis-
tance, often where radial and peripheral highways cross
each other (see, e.g., [36])

Here, we generalise our analysis using a model for poly-
centric cities. Besides the CBD in the city centre, N,
additional activity centres are isotropically distributed
around the CBD at a distance R.. In this model, we thus
have 1 + N, possible destinations for each traveller. We
assume, that every traveller still wants to go to exactly
one destination, which can be thought of, for instance, as
the location of his working place. The precise mapping
of each traveller’s origin and destination depends on a
variety of factors and is subject to current research [38].
Here, we assume the well established gravity model [46],
where the probability pgq(y|x) of a traveller living at x
getting mapped to a destination at y is proportional to
the inverse of their Euclidean distance

1
pa(y|x) o¢ T——
[Ix —

" ©)

In Fig. 8, the mapping is visualised for a city with an
exponential population density and N, = 6 subcentres at
a distance R. = rg from the centre.

We now investigate the impact of additional subcentres
on the optimal loop radius compared to the monocentric
city discussed in Sec. IITC. We keep the number of sub-
centres N, = 6 fixed but vary their distance from the city
centre. The symmetry of this city suggests to implement
a network with n = N, = 6 branches that are placed such
that each branch points into the direction of a subcentre.
We thus focus the discussion on a star shaped network
with 6 branches plus a single loop around the city centre.
In particular, we consider the optimal loop radius r; for
different values of R, (9a). We note that the monocentric
case is equivalent to R. = 0. To keep the analysis clear,
we here discuss only the uncongested scenario b = 0.

We find that a pure star network is the best choice
if the available resources are sparse, that is, if the total
network length L is below a critical value L¢.;. Remark-
ably, the critical value L. for the emergence of a loop
is largely independent of the position of the subcenters
R. as long as they exist (R, > 0).

If L is increased beyond L., the optimal loop radius
r; rapidly increases to match the position of the subcen-
ters R.. This finding is intuitive as travellers can now use
the loop track and exit the network directly at a respec-
tive subcenter. In the numerical results, we thus find
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Figure 8. Destination mapping using the gravity model. In a
city with a population density, that decays exponentially with
the distance from the city centre, each inhabitant is mapped
to exactly one destination using the gravity model given in
Eq. 9. Destinations are visualised as diamonds of different
colour. Each inhabitant is shown as a dot coloured according
to his destination.
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Figure 9. Optimal loop radius in a polycentric city. Assuming
a city with N. = 6 subcentres at a distance R. from the city
centre, we optimise the parameters of a network with n = 6
radial branches and one loop. (a) The optimal loop radius 7}
is plotted over the total network length L for different val-
ues of R.. The grey area marks the parameter range that
would correspond to a disconnected network where the net-
work branches don’t reach the loop, i.e. where r; > lp. (b)
The corresponding optimal branch length I} is plotted over
the network length L. We assume an exponential population
density and the “lazy traveller” model.

a plateau where v/ = R.. For even higher value of L,
the loops leaves the subcenters and r; increases beyond
R, before it finally saturates. In this regime, the loop
track provides an improved accessibility to the network
for travellers from the outskirts of the city. The benefits
of this effect outweighs the benefits of the direct access
to the subcenters.

10
IV. DISCUSSION

In this article, we have analysed the optimal shape of
transportation networks for multimodal urban traffic in
the presence of congestion. In the case where all travellers
travel to the city centre, a regular star network is always
superior to a network with loops or branches in terms of
overall travel time. However, this strict result only holds
if the number of branches n can be freely adapted as the
network is extended. In practice, multiple geographic
constraints exists and the question arises whether one
should rather invest into simple line extensions, branches
or an additional loop track. Our results show that the
answer to this question strongly depends on the available
resources and the importance of congestion.

Our detailed analysis of loopy and branching networks
has led to four main results:

(i) The optimal shape of a loopy network is subject
to discontinuous transitions. That is, the optimal
loop radius 7} varies discontinuously, jumping from
zero to a finite value, as the amount of available re-
sources L is increased. Remarkably, strong conges-
tion can qualitatively alter this scenario and even
suppress the discontinuity.

(ii) In contrast, the optimal shape of a branching net-
work varies smoothly with the amount of available
resources L. In fact, the optimal shape evolves
from no branching to finite branching to complete
branching continuously as L is increased. Complete
branching is always beneficial when the congestion
is dominant.

(iii) Given that we focus on travelling to the city centre,
branching networks are always superior to loopy
networks.

(iv) Finally, congestion generally favours more and
shorter branches over fewer longer ones. That is,
it becomes more important to distribute the trav-
ellers on many lines to mitigate congestion than to
reach the outskirts.

We believe that the value of our approach lies not only
in these findings, but also in the developed methodol-
ogy. We have introduced a model for congested mul-
timodal transportation systems, extending prior studies
such as [26]. To account for the mathematical complexity
of the optimisation problem, we have developed a versa-
tile numerical simulation framework, which can easily be
adapted to a wide range of network geometries as well as
different population densities, routing strategies and con-
gestion models. A distinguished feature of our simulation
model is that it includes the actual routing strategies of
individual travellers. In the current study, we did not
find a significant impact of the different strategies on the
optimal network shape. However, when considering more
complex scenarios, the routing behaviour might gain im-
portance. In the case of concurrent congested transport
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Figure 10. Comparison of different routing strategies. We plot
(a) the optimal travel time and and (b) the cost-benefit ratio
for different routing strategies: Results for the “lazy traveller”
and the “fast traveller” are visually indistinguishable (dashed
lines). Optimal travel times in the ‘polar grid model” are
slightly higher. Results are shown for the Gaussian density.

networks where other modes of transport such as street
traffic are present, congested networks have been shown
to be prone to paradoxical behaviour, where an exten-
sion of infrastructure actually increases congestion [47].
The proposed simulation model can be readily extended
to investigate such phenomena and to include other non-
linear congestion models.
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Appendix A: Routing strategies

The travel time 7 from a starting to a terminal point
is determined by the chosen path. In general, travellers
seek to minimise 7, but different constraints apply lead-
ing to slightly different routing strategies listed below. In
all cases we assume that the traveller has no actual in-
formation about the load of the network. Hence, routing
decisions are based on the travel times for F; = 0.

1. Fast traveller model: The traveller aims to min-
imise his individual travel time. He is free to move
in the plane and chooses the entry/exit stations
such that the sum of the travel times for walking
and network travel assumes a minimum.

2. Lazy traveller model: The lazy traveller aims to
minimise the walking time. Hence, he always uses
the entry/exit stations that are nearest to his start-
ing or terminal point, respectively.

3. Polar grid model: We finally consider a model
where travellers can only use a polar street grid.
In this case, travellers will first walk inwards on
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a radial path until they reach the radial distance
of the closest access point to the network. Then,
they follow the spherical path to this point to en-
ter the network. Using this assumption, we give an
analytical expression for the average travel time in
a regular star shaped network in the appendix B.
This model allows for a closed analytic expression
for the average travel time for certain geometries,
see appendix B.

We find that the results for the “lazy traveller” and
the “fast traveller” are virtually indistinguishable. The
“polar grid model” includes stricter constraints such that
the average optimal averaged travel time 7* is slightly
larger and decreases slower with the network length L.
(Fig. 10a). Similarly, the cost-benefit ration g¢(L) is
smaller for L. — 0, and decreases slower with L as for
the other routing strategies. As the polar grid has been
introduced to enable analytic computations, we focus on
the lazy traveller model for all numerical simulations.

Appendix B: Analytical solution for travel time in congested
star networks

In this appendix, we derive analytical expressions for
the averaged travel time 7 in a city with a subway net-
work of length L in the shape of a regular star with n
branches using the “polar grid” routing strategy.

So consider a star network with n branches of length
Iy = L/n as depicted in Fig. la. The main step in the
solution of the optimisation problem is the computation
of 7(x,0) given a radially symmetric population density
p(r). We assume that the network is accessible every-
where, i.e. we do not discretise this network as in the
numerical approach. Furthermore, we assume that each
traveller takes the shortest possible way towards the net-
work following a radial or spherical path.

In the following, we denote the starting point as x =
(z1,22) in cartesian coordinates or by the radius r and
the azimuth 6 in polar coordinates. Furthermore, we can
exploit the symmetry of the problem and consider only
a single branch at § = 0 and travellers starting in the
interval 6 € [—60,,/2,+6,,/2] with 6,, = 27/n. Then the
travel time of a single traveller is written as

ds(x)
rx,0) = 2B / dr
0

UV vo(r)

The first two quantities, d,, and v,, denote the distance
and velocity, respectively, that is spent walking which are
used to calculate the time needed to go from x to the clos-
est point on the network, where the traveller enters the
subway. The second term gives the time spent within the
public transportation network to drive from the access
point at the radial coordinate ds(x) to the centre along

the branch. Using v, = 1 and vo(r) = (a+bF(r)) ™",



this becomes

ds(x)

7(x,0) = dy(x) + ads(x)+b dr F(r). (BI)

0

The flow F(r) on a branch at radial position r is propor-
tional to the population living in the considered sector at
a radial distance above v. Hence we obtain the local flow
on the branch by integrating over the population density
of the area in which all travellers contribute to the flow
at radius dg

91:,/2 oo o0
F(r) :/ de’ / dr'y’' p(r') = Hn/ dr' v’ p(r").
—0,/2 r r
(B2)

To proceed further, we have to separate the population
into two parts starting at a radius r smaller or larger
than the branch length I,. A traveller starting at a point
with r <, will go spherically to the next branch of the
transportation network such that d,, = |f|r and ds = r.
Integrating over all starting points with r» <[, yields the
contribution

Iy 6n /2
= / drr/ do7(x,0) p(r)
0.,/2

=0, drrp(){(z—ka)

+60, b/ dr/ dr" " p ’)]

to the total travelling time. A traveller starting further
outwards at a radius r > [, will first go inwards radially
until the traveller is on the same radial position as the
outer end of the transportation network, and then pro-
ceed spherically to the branch. Hence, d,, = (r—13)+10ls
and ds; = [, and we obtain the second contribution to the
total travelling time,

0, /2
Ty = / drr/ do7(x,0) p(r)
I 0 /2

=0, drrp(){r—&—(—l—ka)l

(B3)

2
lp
+ 6, b/ dr/ dr'" r" p ’)}

The total travelling time is then obtained by summing
both contributions 7 = n(7; + 72). Solving the integrals
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for all three population densities finally yields

3 3
1-31-a)L+3(z +b) 2+ %
. R _ A +35L‘)
Thom(L7n) — (4 ) 10 nb P<n
ot (5+%) % L L>n

where L = L/rg is the network length in units of the

typical city size rg. The optimal value of the parameter
n* which minimises 7 and the corresponding I} = L/n*
is then computed numerically.

Appendix C: Numerical solver for congested flow networks

In this appendix, we provide additional details on the
numerical solver which computes the averaged travel time
7 in the city for a given parameterised network geome-
try. It determines the optimal parameters for the given
network geometry by scanning the parameter space.

The algorithm can be split into two parts: First, the
city needs to be initialised. Second, for each point in
the parameter space, the network needs to be initialised
and routing takes place. In the following sections we will
discuss these steps. Note, that this algorithm requires
fully connected networks.

Step 1: Initialisation of the city

In our model, some structures of the city do not depend
on the specific implementation of the transportation net-
work, so that we only need to initialise them once in the
beginning and reuse these structures throughout the scan
in the second part.

Namely, these structures comprise the starting point
of each traveller as well as his destination, which are ini-
tialised within the following steps:

1. Draw starting points. In a first step, we need to
generate a population density distributed according
to an arbitrary population density p(z1,z2). We
mimic the exact population density by placing N
travellers in the plane using equally distributed ran-
dom numbers. To obtain an accurate distribution
of the population, we divide the plane into a grid
of sufficiently small and equally sized cells and as-
sume the population density to be constant within
a single cell. Then, each cell is associated to a bin
in a lookup table, where bin width is proportional
to population density p evaluated at the centre of



the cell. Once the lookup table is set up, we draw
for each traveller three equally distributed random
numbers to determine his starting point: The first
random number determines via the lookup table
the cell, within which the starting point is located.
The second and third number define the position
within this cell.

2. Draw destinations. In a second step, the destina-
tions are installed in the city. The number and dis-
tribution of them strongly depends on the underly-
ing model for the city structure. We thus keep our
solver flexible at this point to allow investigations
for various models. We only assume that accord-
ing to a model of choice, a set of D destinations
is generated. Several travellers can be mapped to
the same destination, so that D can be chosen in-
dependently from the number of travellers V.

In this manuscript, we use a toy model with one
destination in the city centre surrounded by N,
subcentres located isotropically at a distance R.
around the city centre. This fundamental model
allows both studying a monocentric city (N, = 0)
and polycentric cities (N., R. > 0). Note, that the
solver easily can be extended to locate the destina-
tions according to an arbitrary destination density
pd(y1,y2|z1,22) in the same way as it draws the
starting points.

3. Map starting points and destinations. Once all
starting points and destinations are located, it re-
mains to map each traveller having an individual
starting point to a destination. We assume, that
the probability, that a traveller with starting point
Z is mapped to a destination located at g/, decreases
with the Euclidean distance || - || as

pulxly) o ¢ ! (1)

x—y|l?”
This approach allows to study destinations map-
ping ranging from completely random mapping for
B =0 to a closest destination mapping for § — oco.
The value of 8 might depend again on the under-
lying models and parameters of the city, such as
the ability of inhabitants to choose their starting
points. In this manuscript, we consider 8 = 1 cor-
responding to the established gravity model [46].

After performing these three steps, we thus have a set
of travellers, each having a starting point and a destina-
tion. In Fig. 11, this situation is visualised for a city with
an exponential population density p(x) oc e~ I*I/70 and
a city with N, = 6 subcentres at a distance R. = 0.57¢
from the city centre, visualised as diamonds. Travellers
are mapped to a destination using different values for
and visualised as dots coloured in the colour of its desti-
nation.
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Figure 11. Comparison of destination mapping models. Each
diamond corresponds to a destination. Travellers are visu-
alised as dots in the colour of the destination they are mapped
to. (a) For 8 = 0, travellers are randomly mapped to a desti-
nation, independent of their starting point. (b) Using a grav-
ity model with 8 = 1, we observe an agglomeration of trav-
ellers close by a destination while still a significant amount
of inhabitants need to travel to other parts of the city. (c)
In the limit 8 — oo, we obtain extreme segregation where in
each part of the city, all travellers are mapped to the closest
destination.

Step 2: Initialisation of the network

Once the travellers are mapped to a starting point and
a destination, we need to provide a set of possible travel
modes that the traveller can chose from to commute be-
tween both points. In this manuscript, we assume the
travellers only have the choice between:

1. Walking. Between any points in the plane, trav-
ellers can walk on any path with a constant velocity
v = 1. Thus, the first possibility for a traveller to
reach his destination is to walk along the straight
line that connects his starting point and destina-
tion.

2. Walking and using the transportation network. Be-
sides walking, there is a transport network, that al-
lows travelling along the network edges at a higher
velocity, that might differ between different edges
and depend on the local flow due to congestion.
Thus, the second possibility is to walk at speed v,
to an access point of the network, travelling inside
the network to an other access point, and finally
walking again the remaining distance to the desti-
nation.

The transportation network is modelled by a set of
nodes which corresponds to stations where travellers can
enter the subway. The nodes are distributed in the plane
according to the given network geometry with a distance
Al to neighbouring stations along the network branches.
In this paper, we set Al = 0.05r9 which corresponds
to a station distance of Al ~ 500m when considering
a city with rg =~ 10km. Note that in some cases, the dis-
tance between neighbouring stations might differ from
this value, e.g. to place the last station at the end of a
branch. Each station s gets in addition to its position a
list of inflow-destination pairs which count for each des-



tination the number of travellers entering the network at
this station.

The edges of the network connect the nodes according
to the given network geometry. For each edge of network
(r, s) connecting two stations r and s we have a flow F.;
such that the travel time along this segment reads

Trs = (@ 4+ bFys) drs (C2)

where d,.¢ is the distance of r and s along the network.

Step 3: Routing

Once we have initialised both the endpoints of each
travellers path and the network, we need in the next step
to find for each traveller the best route to travel to his
destination. There are many different routing strategies
that could be applied to define the best route for an indi-
vidual traveller, depending on the travellers preferences,
access to information and other parameters. Here, we
consider three routing strategies as described in appendix
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A. Most numerical results are shown for the “lazy trav-
eller” model, for which routing consists of two steps:

1. Find closest stations. For each starting point and
for each destination, we determine the closest sta-
tion in the network. Once we mapped each location
to a closest station, we can compute for each station
in the network the number of travellers that would
enter the network here, as well as their target sta-
tion, that is the closest station to their destination.

2. Choose path inside the network.. Once the entry
and exit station are known for each traveller, the
shortest path within the network can be computed
using a standard shortest-path algorithm.

Once the routing procedure is done, it remains to com-
pute the number of travellers for every segment (r,s) of
the network to obtain F, ; and 7, 5. Finally, we compute
the travel time for each traveller, which is then averaged
over all travellers to obtain 7.
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