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Physics-Informed Machine Learning for Power Grid Frequency Modeling
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The operation of power systems is affected by diverse technical, economic, and social factors. Social
behavior determines load patterns, electricity markets regulate the generation, and weather-dependent
renewables introduce power fluctuations. Thus, power system dynamics must be regarded as a nonau-
tonomous system whose parameters vary strongly with time. However, the external driving factors are
usually only available on coarse scales and the actual dependencies of the dynamic system parameters are
generally unknown. Here, we propose a physics-informed machine learning model that bridges the gap
between large-scale drivers and short-term dynamics of the power system. Integrating stochastic differen-
tial equations and artificial neural networks, we construct a probabilistic model of the power grid frequency
dynamics in continental Europe. Its probabilistic prediction outperforms the daily average profile, which
is an important benchmark, on a time horizon of 15 min. Using the integrated model, we identify and
explain the parameters of the dynamical system from the data, which reveal their strong time-dependence
and their relation to external drivers such as wind power feed-in and fast generation ramps. Finally, we
generate synthetic time series from the model, which successfully reproduce central characteristics of the
grid frequency such as their heavy-tailed distribution. All in all, our work emphasizes the importance of
modeling power system dynamics as a stochastic nonautonomous system with both intrinsic dynamics and
external drivers.
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I. INTRODUCTION

Mitigation of climate change requires a comprehensive
transformation of our economy and lifestyle, in particular
the way we generate and utilize electric power [1,2]. Power
plants based on fossil fuels must be replaced by renewable
sources such as wind and solar power, which are volatile
and uncertain [3]. Various sectors are being integrated,
for instance through electric heatpumps [4], introducing
numerous new interdependencies and increasing system
complexity. The electric power system is at the heart of
this transformation. Hence, understanding risks and guar-
anteeing stability of the electric power system is critical
amidst far-reaching challenges [5].
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Power system operation is determined by various tech-
nical, economic, and social influences and perturbations.
Power generation from renewable sources is essentially
determined by the weather [6,7], while the dispatch of con-
ventional power plants is determined on various electricity
markets [8]. Moreover, the load depends on the decisions
and actions of millions of consumers [9]. As the power
grid does not store electric energy, generation and load
must be balanced at all times. On long time scales of hours,
this is achieved by trading on electricity markets [10]. On
short time scales of seconds and minutes, several layers
of control reserves balance the grid, e.g., to counteract
unforeseen perturbations and forecasting errors [11]. The
activation of these reserves is mainly controlled by the grid
frequency, which directly monitors the power imbalance:
a scarcity of generation leads to a drop of the frequency,
which is easily monitored anywhere in the grid. The sta-
bility of this load-frequency control system is challenged
by the energy transformation, as the effective inertia of the
grid decreases, making the frequency more susceptible to
perturbations [12].
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The realistic modeling of frequency dynamics in large-
scale power systems is profitable but complex due to
its nonautonomous character. Stochastic dynamical mod-
els have successfully reproduced central characteristics of
frequency measurements such as their nonstandard dis-
tributions [13–15]. Such models can be used to generate
synthetic frequency time series, which are, for example,
employed to optimize electric devices [16]. Moreover, they
can be used to explore dynamics under different operating
conditions, e.g., with an increased wind power generation
[17]. However, multiple technical, economic, and social
influences and perturbations shape power system dynam-
ics, as explained above. As a consequence, the power
system must be regarded as a stochastic nonautonomous
dynamical system, which makes grid frequency modeling
a daunting task.

In this context, the data-driven representation of exter-
nal drivers can greatly facilitate realistic models, but data
assimilation is challenging due to insufficient data sources.
Integrating actual load time series can improve stochastic
models of grid frequency dynamics in continental Europe
[14]. The assimilation of load and generation data enabled
an accurate reproduction of grid frequency recordings for
the Gran Canaria island [17]. However, load and gener-
ation time series are typically only available at hourly
time scales [18], while frequency dynamics happen at
much smaller time scales, thus requiring a careful adoption
of these external drivers. For large-scale power systems
such as the continental European grid, the data are often
incomplete with missing or unrealistic data points [19].
The physical model is uncertain as, for example, con-
trol schemes vary among local control zones and detailed
setups are not publicly available [20]. Finally, important
dynamical parameters such as the inertia cannot be calcu-
lated exactly due to scarce time series on the power plant
level [21].

Overall, the dynamics of the power grid constitute a
complex system: an intrinsic, potentially nonlinear dynam-
ics [13,22] is enriched by external drivers [23] and stochas-
tic influences. This complexity is somewhat simplified
as some processes take effect on different time horizons,
leading to a separation of time scales. The superposition
of time-varying parameters on a longer time scale then
leads to an effective superstatistics [24], observed in earlier
contributions [25].

In this work, we propose physics-informed machine
learning (PIML) to approach these challenges. Compared
to numerical simulations, PIML models can perform bet-
ter in solving inverse problems with noisy, insufficient data
and imperfect physical models [26,27]. Moreover, they can
better generalize from small amounts of data than common
machine learning methods [26]. Notably, inverse prob-
lems are particularly important for power system control to
estimate hidden states or dynamical parameters from mea-
surements [28]. The inverse problem of inferring system

parameters from input-output data is known as system
identification [29] and PIML models offer a promising tool
for such applications [30].

In particular, we develop a PIML model for the load-
frequency dynamics of electric power systems, which
includes proportional and integral controllers, stochas-
tic noise, and external techno-economic driving factors.
The internal dynamics is described by a set of stochastic
differential equations, which admit a semianalytic solu-
tion. The external driving is manifested through specific
system parameters, which depend on a variety of techno-
economic features such as the generation mix. This depen-
dency is deduced via an artificial feed-forward neural
network (FFNN), which is trained on data of the conti-
nental European power system in a maximum likelihood
approach. Finally, we interpret our model with SHapley
Additive exPlanation (SHAP) values [23,31] to extract the
dependency between dynamical parameters and techno-
economic features. All in all, the model bridges the gap
between the large-scale behavior of interdependent energy
systems and markets and the short-term dynamics of the
power system.

The article is organized as follows. In Sec. II we intro-
duce the physics-informed machine learning model for
the grid frequency dynamics and discuss its implemen-
tation. In Sec. III we present and evaluate three model
applications: probabilistic prediction, system identification
and explanation, and generation of synthetic time series.
Finally, we discuss our results as well as possible future
directions in Sec. IV.

II. AN INTEGRATED MODEL FOR POWER
SYSTEM LOAD-FREQUENCY DYNAMICS

Here, we present the details of how we constructed
a physics-informed model of the power grid frequency,
including a stochastic description of short-term dynamics
and the interaction with power system operation and mar-
kets on longer time scales. Furthermore, we introduce our
approach on modeling these interactions with an artificial
neural network prediction based on techno-economic fea-
tures. The detailed implementation of our model pipeline,
as well as all input data and the results are available from
Zenodo [32,33].

A. Short-term dynamics and control of the grid
frequency

Our starting point is a stochastic model for the dynam-
ics of the grid frequency on short time scales between 1 s
and 1 h [cf. Fig. 1(a)]. The rate of change of the frequency
at time t is determined by the balance of power genera-
tion and load as well as the load-frequency control system
(details are provided in Appendix A 1). Denoting the devi-
ation from the reference as ω(t) = 2π(f (t) − fref), we have

043003-2



PHYSICS-INFORMED MACHINE LEARNING. . . PRX ENERGY 2, 043003 (2023)

the equation of motion

M
dω

dt
= Pim(t) + Pcontrol(t) + Pnoise(t), (1)

where M is the aggregated inertia constant. The power
imbalance on the right-hand side has been decomposed
into three contributions. First, the term Pim(t) denotes sus-
tained power imbalances, for instance due to a recurring
mismatch of the load and the scheduled generation of dis-
patchable power pants [cf. Fig. 1(b)]. Their generation
changes in a stepwise manner, as electricity is traded on
the spot markets in blocks of 15, 30, or 60 min [8]. In
contrast, the load changes continuously, which leads to
deterministic power imbalances [34]. For time intervals of
an hour, we can approximate the time dependence of these
imbalances by an affine linear function

Pim(t) = M
( 4∑

n=1

qn�

(
t − n

�t
4

)
+ rt

)

︸ ︷︷ ︸
=:P(t)

, (2)

where �(t) is the Heaviside function. Parameters
q1, . . . , q4 model the power steps of scheduled generation
after quarters of the hour �t = 1 h, which is the shortest
trading block. Parameter r represents the continuous drift
of the load [cf. Fig. 1(c)]. Notably, qn and r are strongly
correlated as a rising load typically leads to an increase of
scheduled generation. However, irregularities such as fore-
cast errors can also lead to a sustained mismatch of load
and scheduled generation. This requires an independent
modeling of power steps qn and drift r.

Second, the term Pcontrol(t) denotes the balance of pri-
mary and secondary load-frequency control, which can be
modeled by a proportional-integral law as

Pcontrol(t) = −M
τ

ω(t) − M
κ2

∫ t

ti
ω(t′)dt′

︸ ︷︷ ︸
=:θ(t)

(3)

with time constants τ and κ . Parameter τ quantifies the
effective primary control time scale and κ can be inter-
preted as the intrinsic time scale of secondary control. In
contrast, the effective time scale of secondary control is
approximated by κ2/τ [13], as the frequency decays with
this time constant in the overdamped case [14]. We note
that some simplifications are necessary to keep the model
tractable. For instance, Eq. (3) neglects the existence of a
small deadband in the proportional control law.

Finally, we assume that the remaining power imbalance
fluctuations Pnoise(t) are faster than 1 s and thus uncorre-
lated on the time scale of our short-term dynamical model.

Therefore, we modeled such fluctuations as

Pnoise(t) = MDξ(t), (4)

where ξ(t) is white noise with a standard normal distribu-
tion and D quantifies the strength of fast imbalance fluctu-
ations. We used a Gaussian distribution because frequency
increments on time scales of seconds are approximately
Gaussian in continental Europe [35].

Because of the presence of noise, the equation of
motion (1) must be interpreted as a stochastic differential
equation (SDE) with the explicit form

dθ

dt
= ω,

dω

dt
= P(t) − ωτ−1 − θκ−2 + Dξ(t).

(5)

Note that this model only contains effective parameters
that were rescaled by the inertia M . For example, the
actual primary control strength is M/τ [Eq. (3)]. However,
the whole model is invariant under a scaling of M (cf.
Appendix A 2) such that it is only possible to estimate the
ratio of parameters and the inertia.

Applying Itô’s calculus [36], the SDE can be recast into
a Fokker-Planck equation (FPE) of the probability density
function P(θ , ω; t):

∂

∂t
P(θ , ω; t) =

[
− ∂

∂ω
(P(t) − τ−1ω − κ−2θ)

− ∂

∂θ
ω + D2

2
∂2

∂ω2

]
P(θ , ω; t). (6)

As we show in Appendix A 3, the FPE is solved by a
multivariate Gaussian distribution

P(x; t) = 1
2π |�| exp

(
− 1

2
(x − μ)��−1(x − μ)

)
(7)

with x� = (θ , ω) and time-dependent parameters

μ(t) =
(

μθ(t)
μω(t)

)
, �(t) =

(
σ 2

θ (t) σθω(t)
σθω(t) σ 2

ω(t)

)
,

if the parameters satisfy the ordinary differential equations

d
dt

μθ = μω, (8a)

d
dt

μω = P(t) − τ−1μω − κ−2μθ , (8b)

d
dt

σ 2
θ = 2σθω, (8c)

d
dt

σ 2
θω = σ 2

ω − τ−1σθω − κ−2σ 2
θ , (8d)

d
dt

σ 2
ω = −2τ−1σ 2

ω − 2κ−2σθω + D2. (8e)
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FIG. 1. A physics-informed machine learning model for the power grid frequency. (a) In each interval [ti, ti+1], we modeled the grid
frequency with a stochastic process that provides a normal distribution with time-dependent mean μω(t) and standard deviation σω(t).
The panel depicts our model prediction of the continental European grid frequency at ti = 22 : 00 on October 11, 2018 in comparison
to the recorded data. (b) Deviations from the reference frequency are partly driven by deterministic power imbalances Pim(t) = MP(t).
These result from a different time evolution of generation G(t) and load L(t) due to the market-based dispatch of power generation,
which is illustrated in this panel using self-engineered synthetic data. (c) We approximate the deterministic mismatch with a sawtooth
function P(t). (d) The full probabilistic model P(ω, t) incorporates deterministic imbalances Pim(t), additional stochastic imbalance
fluctuations Pnoise(t), and the load-frequency control Pcontrol(t). The parameter model FNN predicts the model parameters, i.e., the
imbalance and control parameters (color highlight), as well as the initial covariances, from N techno-economic features by using a
feed-forward neural network (FFNN). The feature sets differ in the day-ahead and the ex post models, which are two different model
types defined in Sec. II C.

Here, μ and σ are the mean and standard deviation of the
angle and the frequency deviation, while σθω represents
their covariance.

In Appendix A 5, we provide a semianalytical solu-
tion for the moment equations (8), which enables
a numerically tractable calculation of the likelihood
P(ω; t).

B. Power system operation and interdependencies

The SDE for the frequency dynamics in Eq. (5) con-
tains several parameters, describing the load-frequency
control system (τ , κ) or the power imbalances (r, q1,...,4,
D). The parameters are not constant, but change in time
due to different operating conditions of the power system.

For instance, the market-based scheduling of dispatchable
power plants causes deterministic power imbalances [34,
37], which we represent in our model via the imbalance
parameters q1,...,4 and r [Figs. 1(b) and 1(c)]. As the load
changes throughout the day, the imbalance parameters will
also vary over time. Another example is the (effective)
primary control time scale τ , which can change in time
due to a variation of inertia M caused by a varying share
of conventional power plants (cf. Sec. II A). In general,
the operating conditions mainly change due to a differ-
ent dispatch on electricity markets. The largest volume of
electricity in Europe is still traded in hourly blocks [38].
Therefore, we assume that our model parameters change
on time scales of 1 h or longer, but are approximately
constant within each hour.
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We thus propose a model that links different tempo-
ral and technological scales, integrating the fast dynamics
of the frequency-control system, the stochastic noise, and
the impact of slowly changing operating conditions. In
every hourly interval, the frequency is modeled by SDE
(5). The system parameters τ , κ , D, r, q1,...,4 are constant
within the hour, but change from interval to interval in a
stepwise manner. The operating conditions are character-
ized with different techno-economic features, as detailed
below, and their impact on the model parameters is pre-
dicted with an FFNN that is trained such that the stochastic
dynamics best fits the recorded time series. More precisely,
the FFNN constitutes a parameter model FNN : X �→ ϑ ,
where X summarizes the values of techno-economic fea-
tures [Fig. 1(d)]. Vector ϑ includes the system parameters
τ , κ , D, r, q1,...,4 as well as the initial covariances σωθ ,0,
σ 2

ω,0, and σ 2
θ ,0 at time t = ti, while the initial means μω,0

and μθ ,0 are directly obtained from the data. Integrating
the parameter model and the stochastic dynamical model,
we obtained a PIML model that predicts a probability
distribution P(ω; t) for 1 h from techno-economic features.

C. Techno-economic features affecting power system
dynamics and operation

As input features for the PIML model, we used sev-
eral operational time series of the continental European
power system from Ref. [23]. The data set includes 64
techno-economic features with an hourly resolution, which
are based on data from the ENTSO-E Transparency Plat-
form [18].

We created two different PIML models using subsets
with N features from the original dataset. The day-ahead
model offers a probabilistic day-ahead forecast of the grid
frequency (Sec. III A). It uses only day-ahead available
features (N = 13): day-ahead forecasts of load and renew-
able generation, day-ahead electricity prices and sched-
uled generation, as well as their respective ramps (time
derivative of a feature) and the hour of the day (cf. Table I).

In contrast, the ex post model uses only ex post available
features (N = 51): actual load and generation per type,
their ramps and forecast errors (day-ahead minus actual),
as well as day-ahead electricity prices (to keep a price fea-
ture in the input set). As these features describe the actual
system operation, we used the ex post model for parame-
ter inference (Sec. III B) and the generation of synthetic
time series (Sec. III C), but we also compared it to the
day-ahead forecasting model in Sec. III A. A full list of fea-
tures is provided in Table I. Details on the preprocessing
for the continental European power system are provided
in Ref. [23]. Notably, the number of available features
can vary in other power systems, as, for example, certain
generation types might not be installed.

The grid frequency recordings used in this work were
taken from Ref. [39], which provides preprocessed fre-
quency data from the German transmission system oper-
ator TransnetBW [40].

D. Artificial neural network model

The integrated model provides a probabilistic predic-
tion of the power grid frequency for every hourly inter-
val [ti, ti+1]. The architecture of the model is depicted in
Fig. 1(d).

As input, we used the techno-economic features X(i) =
(X1(i), . . . , XN (i))T for each time interval [ti, ti+1], where N
depends on the model type (cf. Sec. II C). In the first step,
each feature Xk was normalized using functions ηk(Xk) =
(Xk − 〈Xk〉)/σk to improve numeric stability, where 〈·〉
denotes the average and σk the standard deviation of the
feature.

The normalized features were fed into an FFNN of Nh
hidden layers with Nu units and activation functions ϕ.
The last layer comprises a linear activation λ, as we aim
to predict real-valued parameters ϑ .

The following layer rescales the output of the FFNN and
implements several constraints. The rescaling was imple-
mented to improve training efficiency and stability. After
random initialization, the outputs uj of the FFNN typi-
cally have the same scale, but the physical parameters do
not. Such a mismatch will yield large initial errors along
certain parameter axes, leading to inhomogeneous loss
landscapes that can make optimization inefficient and more
difficult [41]. This difficulty can be mitigated by a suit-
able rescaling. Furthermore, several output variables must
respect physical constraints. For instance, the time con-
stants τ and κ must be positive and respect the inequality
κ ≥ 2τ to avoid an unphysical oscillation behavior of the
solution. Rescaling and constraints were implemented with
parameter-specific functions νj (uj ), which are described in
Appendix B.

After rescaling, the output ϑ(i) of the parameter model
FNN was used to compute a probabilistic prediction of
the grid frequency for the entire time interval [ti, ti+1]
based on Eq. (7). Vector ϑ(i) contains the system parame-
ters as well as the covariances at t = ti, while the means
μω,0 and μθ ,0 are directly taken from data. For training
and forecasting applications, we used the actual value
of the frequency μω,0(i) = ω(ti) and estimated μθ ,0(i) =∫ ti

ti−60 s ω(t′) dt′. For the generation of synthetic time series,
we predicted intervals sequentially in time and estimated
μω,0 and μθ ,0 from the preceding prediction and not from
the data.

E. Training, testing, and interpretation

Our complete data set comprises 26 859 data points from
2015 to 2019. Each data point corresponds to one inter-
val [ti, ti+1] and comprises a feature vector X(i) and a
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TABLE I. External features used in the ex post and day-ahead models. The data are available online [33], data acquisition and
preprocessing are described in Ref. [23].

Ex post Generation and load
(MW)

Load, total generation, synchronous generation, biomass generation, coal
gas generation, gas generation, geothermal generation, hard coal
generation, lignite generation, nuclear generation, oil generation, other
generation, other renewable generation, pumped hydro generation,
reservoir hydro generation, run-off-river hydro generation, solar
generation, waste generation, wind offshore generation, wind onshore
generation

Ramps (MW/h) Load ramp, total generation ramp, biomass ramp, coal gas ramp, gas ramp,
geothermal ramp, hard coal ramp, lignite ramp, nuclear ramp, offshore
wind ramp, onshore wind ramp, oil ramp, other ramp, other renewables
ramp, pumped hydro ramp, reservoir hydro ramp, run-off-river hydro
ramp, solar ramp, waste ramp

Forecast errors of load
and generation (MW)

Forecast error load, forecast error total generation, forecast error solar,
forecast error offshore wind, forecast error onshore wind

Forecast errors of ramps
(MW/h)

Forecast error load ramp, forecast error generation ramp, forecast error
solar ramp, forecast error offshore wind ramp, forecast error onshore
wind ramp

Other Price day-ahead (euro/MWh)
Day-ahead Generation and load

(MW)
Load day-ahead, solar day-ahead, offshore wind day-ahead, onshore wind

day-ahead
Ramps (MW/h) Load ramp day-ahead, generation ramp day-ahead, solar ramp day-ahead,

offshore wind ramp day-ahead, onshore wind ramp day-ahead
Other Price day-ahead (euro/MWh), price ramp day-ahead (euro/MWh/h),

cos(π/12 × hour), sin(π/12 × hour)

frequency time series ω(i) = (ω(ti), . . . , ω(ti + �t))T with
�t = 60 min.

We quantified the ability of the model to predict the
stochastic frequency dynamics by the negative loglikeli-
hood. The model performance can vary with the prediction
length tmax ≤ �t in each interval. Therefore, we define the
loglikelihood for subsets I = [ti, ti + tmax]:

C(ω(i), ϑ(i)) = −
∑
t∈I

logP(ω; t|ϑ(i)) (9)

with P(ω; t|ϑ) the marginal of PDF (7) evaluated at the
measured data ω(t). During the training process, we uti-
lized the full intervals with tmax = �t. During model eval-
uation, we also investigated the performance for different
prediction lengths tmax. Notably, the loglikelihood is a neg-
atively oriented metric, i.e., smaller values represent a
better performance.

To train the PIML model, we initialized the FFNN
weights using the Glorot uniform initializer [42]. Using
data from 2015 to 2017, we trained the weights with
stochastic gradient descent using the ADAM optimizer
with a fixed learning rate [41]. As a loss function, we chose
the negative loglikelihood (9), summed over all hourly
intervals in the training set. The model hyperparameters
were optimized using random search on data from 2018
(as a validation set) and with parameter choices defined in
Table II. In particular, we trained the model for 100 epochs
and applied early stopping based on the validation loss.

Then, we retrained the best model on data from 2015
to 2018 and evaluated the performance in terms of the
negative loglikelihood on data from 2019 as a test set.

We benchmarked the developed model by comparing
its performance to the daily profile of the grid frequency,
which is defined as follows. For a fixed time of the day
td, we collected all frequency values recorded on all days
in the training set and calculated their average μp(td) and
the corresponding standard deviation σp(td). Our daily pro-
file model Pp returns a normal distribution Pp(ω; t) =
N (μp(td), σp(td)) based on the time of the day td(t) of time
step t. For example, the predicted mean μp(td) for January
11, 2019 at 11:00 equals the average of frequency values
at 11:00 over all days in the training set. In addition to the
daily profile, we applied the constant model as a bench-
mark, which simply provides a normal distribution using

TABLE II. Parameter choices during hyperparameter opti-
mization. Here, Sig(x) is the sigmoid function and tanh(x) the
hyperbolic tangent.

Possible values

Learning rate 10−4, 10−3

Dropout rate 0, 0.15, 0.3
Nu 64, 128
Nh 1, 3, 5
Activation ϕ(x) Sig(x), tanh(x)
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FIG. 2. Probabilistic machine learning model outperforms elementary benchmarks on a prediction horizon of 15 min. (a) We quanti-
fied the performance of our probabilistic frequency prediction with the negative loglikelihood loss, which implicates better performance
if values are lower. For a prediction length of tmax = 15 min, the day-ahead and ex post models showed better performance than our
benchmarks, namely, the constant model and the daily profile predictor. (b) The performance increase of our models relative to the
daily profile shrank with growing prediction length tmax. The dots indicate the median and the bars represent the 25% and 75% quan-
tiles. (c)–(f) Prediction examples with best and worst performance at 01:00 and 18:00 illustrate the strengths and limitations of our
model.

the global mean and variance of the whole frequency time
series.

Finally, we interpreted our parameter model FNN : X �→
ϑ with Shapely additive explanation (SHAP) values [31],
which attribute the prediction of a single parameter ϑj (i) to
the impact of different features Xk(i). Aggregating individ-
ual SHAP values offers a tool to inspect feature importance
and dependencies extracted by the FFNN. In particular, we
used KernelSHAP [43], which approximates SHAP values
for any machine learning model.

Our FFNN model is implemented with tensorflow [44]
and tensorflow probability [45] and we used keras tuner for
hyperparameter optimization [46].

III. MODEL APPLICATION AND EVALUATION

We demonstrate and evaluate three applications of our
PIML model. First, it provides a probabilistic prediction of
the grid frequency trajectory in each time interval, which

we evaluate in terms of the performance and compare it
to elementary benchmarks (Sec. III A). Second, the model
infers time-dependent imbalance and control parameters
based on the data, i.e., we can use it for system identi-
fication. We analyze their time dependence, compare our
estimates with values from the literature, and explain their
dependency on techno-economic features with SHAP val-
ues (Sec. III B). Third, our model provides a tool for gener-
ating synthetic frequency time series by drawing samples
from the stochastic process. Such synthetic time series
should reproduce central stochastic characteristics of the
grid frequency, which we evaluate in Sec. III C.

A. Probabilistic prediction of the grid frequency

Our physics-informed model provides a probabilistic
prediction for unseen samples of the grid frequency. Its
performance depends both on the length of the prediction
and on the available set of features (Fig. 2).
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FIG. 3. Physics-informed machine learning model infers dynamical system parameters. (a)–(e) The inferred parameters showed
strong daily patterns, which underlines the importance of time-dependent dynamical properties in our model. The panels depict the
daily means (solid lines) and the range between the 25% and 75% quantile (area). (f) The ratio between the average inferred parameters
and the reference value ϑ ref

j obtained from time-independent stochastic inference (cf. Table III). In addition to the standard scaling used
in the main model and a model with no scaling, we tested small variations of the scaling parameters (defined in Table IV) with ten
random weight initializations for each combination of scaling parameters. The ensemble means (markers) and the data range (error
bar) indicate the relation between the inferred parameters and the reference, which showed particularly large deviations if no scaling
is applied.

The machine-learning model outperforms elementary
benchmarks on a prediction horizon of 15 min [Fig. 2(a)].
The ex post model, defined in Sec. II C, yielded a lower
median loss than the daily profile and the constant model
for predicting the first tmax = 15 min of each interval.
Restricting the feature set to day-ahead available data (cf.
Sec. II C) yielded a similar performance, which enables
us to forecast future frequency deviations better than the
daily profile. With growing prediction length tmax, the per-
formance increase of our PIML models (relative to the
daily profile) deteriorated [Fig. 2(b)]. This is probably due
to an accumulation of errors as the model starts to devi-
ate from the initial condition, which was fixed by the
data.

The prediction examples in Figs. 2(c)–2(f) illustrate the
strengths and limitations of our model. The intervals with
the best model performance at 01:00 and 18:00 demon-
strate how our model outperforms the daily profile in the
first 15 min [Fig. 2(c)] or even the full hour [Fig. 2(e)].
A remarkable aspect is observed when inspecting the inter-
vals with the worst performance: as the physics-informed

model fails to capture the dynamics, so does the daily pro-
file, and both models offer a similar prediction [Figs. 2(d)
and 2(f)]. In these cases, our PIML model reproduced a
daily average behavior, possibly missing enough detailed
information in the techno-economic feature set.

In the following sections, we explain dynamical parame-
ters based on techno-economic features, among others. The
ex post model better suits for explanation as it also includes
actually measured features, such as forecast errors. There-
fore, we only focus on the ex post model and predict the
full interval (with tmax = 1 h) in following sections.

B. System identification and explanation

1. Inference and variation of system parameters

In addition to probabilistic prediction, our PIML model
provides a tool to infer dynamical system parameters from
frequency measurements and techno-economic features
(Fig. 3). In contrast to time-independent models [14,47],
our parameter model FNN extracts time-dependent sys-
tem parameters ϑ(i), which mirror the local dynamical
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TABLE III. Reference values of the system parameters ϑ ref
j

obtained in a time-independent model [14]. We note that this
study employed the actual grid frequency instead of the angular
velocity. Thus, we rescaled the results according to D → 2πD,
q1 → 2πq1, r → 2πr, θ → 2πθ , while τ and κ stayed the same.
Furthermore, this study did not directly provide a result for r, but
its value was implicitly defined through the constraint 〈Pim(t)〉t =
0, which yields r = −2q/tmax.

Parameter Value

τ 120 s
κ 183 s
D 0.007 s−3/2

q1 0.01 s−2

r 0.000 009 s−3

properties of load-frequency control (cf. Fig. 1). These
parameters change in a stepwise manner for each hourly
interval i (cf. Sec. II B). Note that we only estimated effec-
tive parameters that also contain the impact of the inertia
(cf. Sec. II), which we discuss later in Sec. IV. When it
comes to the deterministic imbalance parameters q1,...,4,
we only discuss the results for q1, the power step at the
beginning of the hour as an application example.

The inferred parameters strongly changed during the
day, which illustrates the importance of time-dependent
dynamical modeling [Figs. 3(a)–3(e)]. The daily profile of
the primary control time scale showed variations of 37%,
while the intrinsic secondary control time scale varied by
11%. The strength of high-frequency imbalance fluctua-
tions D varied by 6% and the deterministic imbalance
parameters q1 and r changed by 80% and 120%.

The imbalance parameters showed distinct patterns that
reveal physically meaningful impact factors on the grid
frequency. We inferred upward power steps q1 and neg-
ative drifts r in the morning around 06:00 and in the
evening around 18:00, while the opposite behavior was
estimated around noon and during the night. This suc-
cessfully models the deterministic imbalances between
scheduled generation and continuous load: around noon
and during the night, the load is decreasing, thus causing
downward power steps and positive drifts [cf. Figs. 1(b)
and 1(c)].

The inferred parameters agree well with estimates from
the literature. Typical values of the system parameters
were obtained in a time-independent model using the
Kramer-Moyal expansion by Rydin Gorjão et al. [14] and
are summarized in Table III. Figure 3(f) depicts the ratio
between the time average of our absolute parameter esti-
mates and the reference value from the literature ϑ ref

j . Our
model (referred to as “standard scaling”) infers parameter
values within the same order of magnitude as the reference
values, i.e., the ratio to the reference is near one.

The adequate inference of dynamical parameters is
greatly facilitated by our implementation of appropriate

scaling steps. In our PIML model, the last model layer
rescales the inferred parameter to a similar order of mag-
nitude (see, Sec. II D). In particular, we used the scaling
constants defined in Appendix B throughout the paper
(referred to as “standard scaling”). To assess the impact of
the rescaling, we defined two other scaling configurations.
If no scaling is applied (triangle markers), the estimated
parameters deviated from the reference by multiple orders
of magnitude. However, small variations of our standard
scaling coefficients, which are defined in Appendix B,
did not strongly change the parameter estimates (square
markers). This indicates that scaling is important to obtain
reasonable parameter estimates with fixed hyperparame-
ters (number of epochs, learning rate, etc.), but the results
seem to be independent of the exact choice of the scaling.
As already discussed in Sec. II D, the rescaling probably
leads to better results due to the large difference in scale
between the model parameters, which renders the FFNN
training inefficient and unstable [41].

2. Techno-economic drivers of dynamical system
properties

Using SHAP values [31], we explain the dependencies
between the techno-economic features and the dynamical
parameters ϑj , which the model extracted from the data
(Fig. 4). Focusing on the deterministic mismatch param-
eters q1 and r and the primary control time scale τ , we
analyze feature importance quantified by the mean abso-
lute SHAP value [Fig. 4(a)], as well as dependencies
[Figs. 4(b)–4(d)] that display SHAP values for different
feature values.

The power step q1 was mostly determined by genera-
tion and load ramps [Figs. 4(a) and 4(b)]. The load ramp
strongly correlates with the direction of scheduled genera-
tion steps as electricity markets aim at covering the load.
It thus had a positive impact on the step q1. In addition,
fast generation types are important features. It is known
that especially fast generation ramps drive the power step
and thus the rate of change of frequency (RoCoF) at the
beginning of the market intervals [23]. Accordingly, the
PIML model yielded a high positive impact of hydro power
ramps, which are among the fastest in the European power
system.

Drift r of the deterministic mismatch mirrors continu-
ous changes of the load [Figs. 1(b) and 1(c)]. Consistently,
load ramps obtained the highest feature importance for
r with positive load ramps leading to negative slopes r
[Figs. 4(a) and 4(c)]. Solar ramps were also ranked highly,
but their dependency showed the opposite behavior. This
mirrors the fact that in addition to the load, solar power also
shapes the slow evolution of the deterministic mismatch
Pim(t) ∼ rt [37]: the load and aggregated solar power typ-
ically change slowly and continuously on a time scale of
hours, with the load having a negative impact and the solar

043003-9



JOHANNES KRUSE et al. PRX ENERGY 2, 043003 (2023)

For
eca

st err
or

loa
d ram

p

For
eca

st err
or

tot
al gen

era
tion

For
eca

st err
or

gen
era

tion
ram

p

For
eca

st err
or

ons
hor

e wind
ram

p

Gas
gen

era
tion

Lign
ite

gen
era

tion

Nucl
ear

gen
era

tion

Gene
rat

ion
oth

er

Pum
ped

hyd
ro

gen
era

tion

Sol
ar

gen
era

tion

Wast
e gen

era
tion

Onsh
ore

wind
gen

era
tion

Hard
coa

l ram
p

Load
ram

p

Price
s day

-ah
ead

Pum
ped

hyd
ro

ram
p

Run-
off-riv

er hyd
ro

ram
p

Sol
ar

ram
p

0.0

0.5

1.0

Fe
at

ur
e

im
po

rt
an

ce

(a)

0 25
Load ramp (GW/h)

−0.005
0.000
0.005

SH
A

P
va

lu
e

fo
r

q 1
(s

−
1
)

(b)

−2.5 0.0 2.5
Run-off-river

hydro ramp (GW/h)

−10 0 10
Solar ramp (GW/h)

−5 0 5
Pumped hydro
ramp (GW/h)

0 25
Load ramp (GW/h)

−2.5
0.0
2.5

SH
A

P
va

lu
e

fo
r

r
(s

−
2
) ×10−6(c)

−10 0 10
Solar ramp (GW/h)

×10−6

−2.5 0.0 2.5
Run-off-river

hydro ramp (GW/h)

×10−6

0 25 50
Solar generation (GW)

×10−6

0 25
Load ramp (GW/h)

0

10

SH
A

P
va

lu
e

fo
r

τ
(s

)

(d)

25 50 75
Onshore wind

generation (GW)

−2.5 0.0 2.5
Run-off-river

hydro ramp (GW/h)

20 30
Lignite generation (GW)

Primary control time scale τ

Intrinsic secondary control time scale κ

Power fluctuation strength D

Power step q1

Power drift r

FIG. 4. SHAP values reveal dependencies between techno-economic features and dynamical system parameters. (a) The mean
absolute SHAP values quantify the overall importance of a feature, which varies strongly among the different dynamical system
parameters. We show the eight most important features for each model parameter. (b)–(d) The relation between feature values and
SHAP values reveals the dependencies that were extracted by our model. The inferred dependencies generally represent physically
meaningful effects that agree with domain knowledge (see the main text).

power having a positive impact on the power imbalance.
This perfectly manifests in the opposite effects of load and
solar ramps on the mismatch slope r, which were identified
by our PIML model [Fig. 4(c)].

The effective time scale of primary control τ was deter-
mined by load and generation ramps, wind power, and
lignite power generation [Figs. 4(a) and 4(d)]. Most inter-
estingly, increasing wind power generation led to a larger
time scale of primary control. In an Ornstein-Uhlenbeck
process, τ quantifies the time to revert back to the mean
after a disturbance. A large wind power feed-in can cause
large stochastic imbalances and thus effectively reduce

the mean-reverting time τ . This would be consistent with
our SHAP results and with previous studies that showed
an increased variability of short-term frequency dynam-
ics with increasing wind power feed-in [48]. Notably, this
dependency cannot be caused by the rescaling of dynam-
ical parameters with the inertia. If the actual primary
control strength M/τ was constant (cf. Sec. II), increasing
wind power, and thus decreasing inertia M , would corre-
spond to decreasing values of τ . However, we observed
the opposite: the dependency showed increasing values
of τ [Fig. 4(d)], thus pointing to other causes such as an
increased variability.
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C. Generation of synthetic grid frequency time series

A third major application of probabilistic machine learn-
ing models is the generation of synthetic time series.
Scenario generation, i.e., the generation of multiple syn-
thetic samples from the model, is important for simulation
or optimization models [49,50]. Given a data set of techno-
economic features, synthetic time series are obtained as
follows. For every interval i, we applied the FFNN to
predict the system parameters ϑ(i). We then integrated
the original SDE (5) using a standard Euler-Maruyama
method. To ensure continuity, we used the final values of
ω and θ from one interval as initial states for the following
interval. As a test case, we generated a synthetic trajectory
from April 06 to April 13 in our test set, for which the first
hours are shown in Fig. 5(a).

Power grid frequency trajectories exhibit several highly
characteristic stochastic properties [25]: the distribution of
frequency deviations ω(t) is heavy tailed [Fig. 5(b)], i.e.,
large deviations are much more likely than expected from
conventional normal statistics. Furthermore, the autocor-
relation function peaks at multiples of a quarter hour, the
smallest interval of electricity trading in Europe, which are
most strongly pronounced after one hour [Fig. 5(d)]. All
these characteristic patterns were well reproduced by our
PIML model.

A discrepancy of the data and model is observed
in the statistics of the frequency increments �ωT(t) =
ω(t + T) − ω(t) for T = 1 s, as shown in Fig. 6. The

increments are correlated for time scales of up to 8 s,
which indicates correlated power fluctuations Pnoise(t). In
contrast, the PIML model assumes Gaussian white noise
[cf. Eq. (4)], and thus cannot reproduce the correlation of
the increments for T = 1 s. At the same time, the PIML
model strongly overestimates the variance of the incre-
ments. Increments with a longer time lag of T = 60 s are
much better reproduced though.

We conclude that the assumption of uncorrelated power
fluctuations Pnoise(t) is not fully justified. The model com-
pensates for the missing correlations by increasing the
noise strength, such that the frequency diffusion on longer
timescales fits the data. We note, however, that the assump-
tion of uncorrelated fluctuations is needed to derive the
Fokker-Planck equation and its analytic solution. Going
beyond this approximation would render model training
close to impossible.

All in all, our results reveal important aspects of load-
frequency dynamics and control. The success of our model
suggests that the non-normal statistics is a direct con-
sequence of the nonautonomous character of the power
system. We recall that a time-invariant linear Gaussian
process always leads to a Gaussian distribution of the
observables. The changing system parameters in the power
grid naturally induce heavy tails in the frequency distribu-
tion, without the need for heavy-tailed power fluctuations
or nonlinear evolution equations; cf. the discussion in Ref.
[15,25].
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FIG. 5. Physics-informed machine learning model generates synthetic grid frequency time series with characteristic properties. (a)
We sampled a synthetic frequency trajectory from our probabilistic model for the test period April 06 to April 13 in our test set, which
was the longest period without missing or corrupted data points. The panel depicts the start of this period, showing good agreement
between real and synthetic time series. (b),(c) The autocorrelation function (ACF) and the probability density function (PDF) of the
frequency deviation ω(t) are well reproduced by our synthetic time series.
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FIG. 6. Discrepancy of the data and model at the shortest time scales. (a) The PIML model strongly overestimated the variability
of small-scale frequency increments �ωT(t) = ω(t + T) − ω(t) (T = 1 s), as indicated by their PDF. (b) The ACF of the increments
indicates the presence of correlations on time scales of several seconds in the power fluctuations Pnoise. In contrast, we have to assume
uncorrelated noise in the PIML model to keep the training process feasible. To still reproduce the variability of the grid frequency, the
model had to assume a larger variance in the increment PDF.

IV. DISCUSSION

We have developed a model of power system oper-
ation that integrates both the internal system dynamics
and the external techno-economic features. The integra-
tion has been achieved by the combination of an explicit
simulation model in terms of stochastic differential equa-
tions, and an artificial neural network to link the external
influences to the system parameters. We thus obtained
a generic physics-informed machine learning model of
power system dynamics and control.

Using grid frequency recordings from the continental
European power grid as a test case, we demonstrated three
applications of our physics-informed model. First, we pro-
vided a probabilistic prediction of the grid frequency in
intervals of 1 h. In the first 15 min, our model outperformed
the daily average profile of the grid frequency, which is
already a good predictor in continental Europe [23]. This
was also possible when using only day-ahead available
techno-economic features, thus providing the possibility
to forecast grid frequency dynamics 15 min ahead. Previ-
ous grid frequency predictors only used historic frequency
data as inputs [51–53]. Approaches that integrated exter-
nal features previously focused on aggregated frequency
deviations [23,54], which is also a cause of the data qual-
ity. Techno-economic features are typically available only
on aggregated time scales of 15 min or 1 h, while the fre-
quency fluctuates on a time scale of seconds (and even
shorter time scales). We bridge the gap between large-
scale techno-economic features and short-term frequency
dynamics by using a physics-informed model. It connects
the time-aggregated features with dynamical parameters of
a stochastic process that well describes the short-term grid
frequency fluctuations.

Second, our model provides a tool for system identifi-
cation and explanation. The model inferred the effective
system parameters for every hour from frequency measure-
ments and techno-economic input features. The parameters
were rescaled by the inertia (cf. Sec. II), but the actual sys-
tem parameters can be obtained by incorporating inertia
time series, which however can only be approximated for
large-scale power systems [21,55]. The inferred parame-
ters varied strongly in time, which indicates the impor-
tance of modeling the grid frequency as a nonautonomous
system with time-dependent parameters. Explaining the
inferred parameters with SHAP values further revealed
their dependency on techno-economic drivers. For exam-
ple, the primary control time scale increased with rising
feed-in of wind power, which is harder to control and thus
effectively leads to longer relaxation times. Our tool there-
fore extracts and explains physically meaningful system
parameters and their time-dependent drivers.

Third, we used our model for the generation of syn-
thetic grid frequency time series. The synthetic data well
approximated the heavy-tailed distribution of frequency
deviations and the recurrent patterns in its autocorrela-
tion. In contrast to previous stochastic models [13–15], the
synthetic time series also reproduced the actual frequency
trajectory with its local time-dependent characteristics.
Notably, the model requires very little system-specific
information as inputs, but learns them directly from the
data. Hence, the model is highly flexible and can be easily
transferred to other grids.

A key feature of the load-frequency dynamics is the
presence of three distinct time scales. The power balance
fluctuates on time scales of seconds and below, which was
represented by the term Pnoise(t) in the model. The data

043003-12



PHYSICS-INFORMED MACHINE LEARNING. . . PRX ENERGY 2, 043003 (2023)

suggest that fluctuations are correlated on time scales of a
few seconds, but these correlations had to be approximated
to keep the model tractable. Load-frequency control acts
on the time scale of minutes to restore the power balance
and bring the frequency back to its reference value. This
dynamics has been modeled by stochastic differential equa-
tions, where the high-frequency fluctuations enter as noise.
The power system further evolves on time scales of hours
due to changes in the dispatch of power plants, the trad-
ing on electricity markets, and the demand. This evolution
is included in the model via changing system parameters,
including the droop constants of the control system and
the systematic power balance Pim. This evolution has been
modeled by a neural network in terms of large-scale energy
system features.

Notably, the load-frequency control system itself com-
prises different processes with different time constants.
The inertia of the synchronous machines determines the
response to a perturbation or a change in the dispatch.
Though we cannot infer the numerical value of the iner-
tia, the response is very well reproduced by the model.
This “momentary reserve” is the fastest contribution to
the load-frequency control system, and its role in future
renewable power systems is an important topic in power
engineering [12]. Primary control restores the power bal-
ance, while secondary control brings the grid frequency
back to its reference value. We assumed that primary con-
trol is faster than secondary control (τ < κ) to ensure an
overdamped dynamics. The numerical results yield values
around τ ≈ 35 s and κ ≈ 145 s, which consistently satisfy
our assumptions and agree with reference values [14].

In the context of power system dynamics and con-
trol, physics-informed machine learning methods have
become popular during the past years [56,57]. Classical
physics-informed neural networks (PINNs) are commonly
applied to the differential equations directly [58], which
we circumvented by providing a semianalytical solution
for our system. However, a (semi)analytical solution is
not possible anymore when including nonlinearities such
as deadbands. In the future, our model can be modi-
fied to leverage classical PINNs to also treat nonlineari-
ties and more generic power system dynamics. Previous
applications of PINNs to power system dynamics have
successfully addressed autonomous dynamics [57,59]. We
contribute to these developments by proposing a model
that explicitly models nonautonomous dynamics, which
may greatly advance the application of physics-informed
machine learning in the energy sector.
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APPENDIX A: A STOCHASTIC MODEL OF GRID
FREQUENCY DYNAMICS AND CONTROL

1. The aggregated swing equation

Grid frequency deviations �f (t) = (f (t) − fref) from the
reference fref = 50 or 60 Hz reflect power imbalances �P
in the grid, which have to be compensated via differ-
ent sources. Firstly, the rotational energy of synchronous
machines provides momentary reserve power Prot through
changes in the rotation speed [60]:

Prot = 2HSB

fref

d�f
dt

= 2πM
d�f

dt
. (A1)

Here, H denotes the average inertia constant of a syn-
chronous machine, which is typically around 6 s for con-
ventional generators [13] and SB is the total rated power
of all generators. Loosely speaking, H equals the kinetic
energy of the rotating machine, rotating at fref divided by
its rated power. Parameter M then denotes the aggregated
inertia of the grid.

Secondly, damping power is provided via primary con-
trol, also referred to as frequency containment reserve, and
frequency-sensitive loads [60],

Pprim = K1�f , (A2)

where K1 = KT + KL is the inverse droop coefficient,
which comprises the effect of control KT and load damp-
ing KL ([K1] = W/Hz). The control effect KT is typically
1 or 2 orders of magnitude larger than KL [11]. Their values
are often provided in the per unit (pu) system with Kpu

1 =
frefK1/P0, as parameter KT depends on the steady-state
load P0 within the specific system. For example, in Great
Britain a typical value of Kpu

1 = 12.5 is reported [13].
Thirdly, secondary control, also referred to as frequency

restoration reserve, restores the frequency back to its refer-
ence fref. Secondary control is typically implemented as an
integral controller (but other implementations exist) [61]:

Psec = K2θ̄ (A3)

with the integrated frequency deviation

θ̄ (t) =
∫ t

ti
�f (t′) dt′. (A4)
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Parameter K2 is the secondary control gain ([K2] = W),
which reads Kpu

2 = frefK2/P0 in the pu system. For exam-
ple, in Great Britain a typical value of Kpu

2 = 0.05/s is
reported [13]. In interconnected power grids, secondary
control may also be used to reduce unscheduled flows
between different control areas [62]. These control actions
are applied reciprocally in two areas and thus have only
minor effects on the overall frequency dynamics.

Finally, this yields the aggregated swing equation, which
is simply the power balance of all contributions:

dθ̄

dt
= �f , (A5)

2πM
d�f

dt
= −K1�f − K2θ̄ + �P(t). (A6)

Here, �P(t) denotes the imbalance of power generation
and load, excluding the contribution of the control system
(A2)–(A3).

2. Stochastic differential equations

Following Rydin Gorjão et al. [14], we modeled the
power imbalances �P(t) = Pim(t) + D̄ξ(t) as a sum of
“deterministic” power imbalances Pim(t) and stochastic
deviations D̄ξ(t). In the large European power grids, deter-
ministic power imbalances repeatedly arise due to a dif-
ferent ramping of dispatchable generators and the load or
due to forecasting errors [63]. Stochastic deviations are
modeled as Gaussian noise ξ(t) defined as the derivative
of a Wiener process Wt that has independent, normally
distributed increments dWt with zero mean and variance
〈dW2

t 〉 = dt.
To estimate model parameters, we have to rescale

Eq. (A6) by M as all parameters are otherwise undefined
up to a multiplicative factor. In addition, we transition
from frequencies and integrated frequencies to angular
velocities and angles. We define

τ−1 = K1

2πM
, (A7)

κ−2 = K2

2πM
, (A8)

D = D̄
M

, (A9)

P(t) = Pim(t)
M

, (A10)

θ = 2πθ̄ . (A11)

Based on these definitions, we obtain a stochastic model
for the angular grid frequency deviation ω = 2π�f :

dθ = ω dt, (A12)

dω = (P(t) − τ−1ω − κ−2θ)dt + D dWt. (A13)

Collecting both stochastic variables into a vector X =
(θ , ω)T, we can write our model as a two-dimensional
matrix equation

dX = a(X, t)dt + D dWt, (A14)

using the drift vector a(X, t) = (aθ , aω)T with aθ =
ω, aω = P(t) − τ−1ω − κ−2θ , the diffusion matrix D =
diag(D, 0), and a two-dimensional Wiener process Wt.

The stochastic differential equation (A14) can be recast
into a Fokker-Planck equation for the joint probability den-
sity function P(θ , ω; t) that describes the distribution of
the two random variables θ and ω at time t [64]. Using Itô
calculus, one obtains

∂

∂t
P(θ , ω; t) =

[
− ∂

∂ω
(P(t) − τ−1ω − κ−2θ)

− ∂

∂θ
ω + D2

2
∂2

∂ω2

]
P(θ , ω; t). (A15)

3. Solution of the Fokker-Planck equation

In this section, we prove that the Fokker-Planck
equation (A15) is solved by a multivariate normal distri-
bution with PDF

P(x; t) = 1
2π |�| exp

(
− 1

2
(x − μ)��−1(x − μ)

)

(A16)

with x� = (θ , ω) and time-dependent parameters

μ(t) =
(

μθ(t)
μω(t)

)
, �(t) =

(
σ 2

θ (t) σθω(t)
σθω(t) σ 2

ω(t)

)

if the parameters satisfy the ordinary differential equations

d
dt

μθ = μω, (A17a)

d
dt

μω = P(t) − τ−1μω − κ−2μθ , (A17b)

d
dt

σ 2
θ = 2σθω, (A17c)

d
dt

σ 2
θω = σ 2

ω − τ−1σθω − κ−2σ 2
θ , (A17d)

d
dt

σ 2
ω = −2τ−1σ 2

ω − 2κ−2σθω + D2. (A17e)

We prove this result using the characteristic function,
which is defined via the Fourier transform

φ(u; t) =
∫

eiu�x P(x; t)d2x. (A18)
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In terms of the characteristic function, the FPE reads

∂

∂t
φ(u; t) = Lφ(u; t)

= is
[(

P(t) + iτ−1 ∂

∂s
+ iκ−2 ∂

∂r

)

+ r
∂

∂s
− D2

2
s2

]
φ(u; t), (A19)

where we have defined u� = (r, s). The characteristic
function of the normal distribution (A16) reads

φ(u; t) = exp
(
iu�μ − 1

2 u��u
)
,

φ(r, s; t) = exp
(
i(rμθ + sμω)

− 1
2 (r2σ 2

θ + s2σ 2
ω + 2rsσθω)

)
.

(A20)

We now show that the normal distribution (A20) with
parameters (A17) satisfies the Fokker-Planck equation
(A19). We first evaluate the right-hand side of the FPE,

Lφ(u; t) = is
[(

P(t)+ iτ−1 ∂

∂s
+ iκ−2 ∂

∂r

)
+ r

∂

∂s
− D2

2
s2
]

× exp
(

i(rμθ + sμω)

− 1
2
(r2σ 2

θ + s2σ 2
ω + 2rsσθω)

)
,

=
[

isP(t) − D2

2
s2 − (τ−1s − r)

× (iμω − sσ 2
ω − rσθω)

− κ2s(iμθ − rσ 2
θ − sσθω)

]
φ(u; t). (A21)

Now we proceed with the left-hand side,

∂

∂t
φ(u; t) =

[
i
(

s
dμω

dt
+ r

dμθ

dt

)

− 1
2

(
r2 dσ 2

θ

dt
+ s2 dσ 2

ω

dt
+ 2rs

dσθω

dt

)]
φ(u; t). (A22)

Inserting Eqs. (A17) then yields

∂

∂t
φ(u; t) =

[
isP(t) − D2

2
s2 − (τ−1s − r)

(iμω − sσ 2
ω − rσθω)

− κ2s(iμθ − rσ 2
θ − sσθω)

]
φ(u; t), (A23)

which coincides with the right-hand side (A21).

4. Moment equations

The ordinary differential equations for parameters (A17)
can also be obtained in a more direct way, once we know
that the PDF remains Gaussian at all times. In fact, we
can exploit the fact that the parameters of a Gaussian PDF
equal the mean and the (co)variances. The dynamics of the
mean and the (co)variances are determined by the moment
equations, which we extracted using Itô’s lemma. For any
twice differentiable scalar function g(X) of the random
variable X in Eq. (A14), Itô’s lemma reads [36]

dg = [
(∇g)Tμ + 1

2 Tr(DTHgD)
]
dt + (∇g)TDdW,

(A24)

where ∇g is the gradient and Hg is the Hessian matrix of
function g(X). This yielded in our case

dg =
[

∂g
∂ω

μω + ∂g
∂θ

ω + D2

2
∂2g
∂ω2

]
dt + ∂g

∂ω
D dW. (A25)

To apply this to moment functions, we further assumed that
d〈g〉 = 〈dg〉. For the first moments (averages) g = 〈θ〉 and
g = 〈ω〉, we obtained

d〈θ〉
dt

= 〈ω〉, (A26)

d〈ω〉
dt

= P(t) − τ−1〈ω〉 − κ−2〈θ〉. (A27)

The second moments g = 〈θ2〉, g = 〈ω2〉 and the mixed
moment g = 〈ωθ〉 yielded

d〈θ2〉
dt

= 2〈θω〉, (A28)

d〈ω2〉
dt

= 2P(t)〈ω〉 − 2τ−1〈ω2〉 − 2κ−2〈ωθ〉 + D2,

(A29)

d〈ωθ〉
dt

= P(t)〈θ〉 − τ−1〈ωθ〉 − κ−2〈θ2〉 + 〈ω2〉. (A30)

In this derivation, we used 〈ω dW〉 = 0 and 〈θdW〉 = 0.
Identifying μθ = 〈θ〉, μω = 〈ω〉, σ 2

ω = 〈ω2〉 − 〈ω〉2, σ 2
θ =

〈θ2〉 − 〈θ〉2, and σθ ,ω = 〈ωθ〉 − 〈ω〉〈θ〉 then reproduces
Eqs. (A17).

5. Solution of the moment equations

We now provide a semianalytic solution for the ordinary
differential equations (A17) describing the evolution of the
parameters μθ , μω, σ 2

ω, σ 2
θ , and σθ ,ω. We first note that the

equations for the deterministic part (the means) and the
stochastic part [the (co)variances] decouple; hence, they
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can be treated separately. We collected the deterministic
equations using the vector yd = (μθ , μω)T:

dyd

dt
= Adyd + bd(t), (A31)

Ad =
(

0 1
−κ−2 −τ−1

)
, (A32)

bd(t) =
(

0
P(t)

)
. (A33)

With ys = (σ 2
θ , σθ ,ω, σ 2

ω)T, the stochastic part yielded

dys

dt
= Asys + bs, (A34)

As =
⎛
⎝ 0 2 0

−κ−2 −τ−1 1
0 −2κ−2 −2τ−1

⎞
⎠ , (A35)

bd =
⎛
⎝ 0

0
D2

⎞
⎠ . (A36)

These equations are linear, ordinary differential equations
(ODEs) for which several solution methods exist.

a. Solution of the homogeneous equations

The general solution of the homogeneous ODE ẏ = Ay
with time-independent coefficients A is given by

yh(t) = U(t)U−1(0)y0. (A37)

The columns of matrix U(t) span the solution space of
the homogeneous ODE. The column vectors are given by
ui = vieλit, where the vi are the eigenvectors of A and
the λi are the corresponding eigenvalues. Using any com-
puter algebra program, we calculated the eigenvalues and
eigenvectors for matrix Ad from the deterministic part:

λd,1 = − 1
2τ

√
1 − 4τ 2

κ2 − 1
2τ

, (A38)

λd,1 = 1
2τ

√
1 − 4τ 2

κ2 − 1
2τ

, (A39)

vd,1 = (λd,2κ
2, 1)T, (A40)

vd,2 = (λd,1κ
2, 1)T. (A41)

For matrix As from the stochastic part, we obtained

λs,1 = −τ−1, (A42)

λs,2 = −1
τ

√
1 − 4τ 2

κ2 − 1
τ

, (A43)

λs,3 = 1
τ

√
1 − 4τ 2

κ2 − 1
τ

, (A44)

vs,1 =
(

κ2, − κ2

2τ
, 1

)T

, (A45)

vs,2 =
(

− κ2 − λs,3
κ4

2τ
,
λs,3κ

2

2
, 1

)T

, (A46)

vs,3 =
(

− κ2 − λs,2
κ4

2τ
,
λs,2κ

2

2
, 1

)T

. (A47)

To specify the homogeneous ODE solutions for μω(t) and
σ 2

ω(t), we needed the inverses of matrix U(t), i.e., matri-
ces U−1

d (t) and U−1
s (t), which we again obtained through

a computer algebra program. The ω components of the
solution for the homogeneous system (A37) then read

μω,h(t) = 1
λd,1 − λd,2

[κ−2θ0(eλd,2t − eλd,1t)

+ ω0(λd,1eλd,1t − λd,2eλd,2t)], (A48)

σ 2
ω,h(t) =

[
σ 2

θ ,0(e
λs,2t + eλs,3t − 2eλs,1t)

τ 2

κ2

+ σω,θ ,0

(
−2τeλs,1t + 8τ 2

κ2

λs,2κ
2(4τ)−1 + 1

λs,2 − λs,3
eλs,2t

+ 8τ 2

κ2

λs,3κ
2(4τ)−1 + 1

λs,3 − λs,2
eλs,3t

)

+ σ 2
ω,0

(
−2τeλs,1t + 2λs,2τ

2 − λs,2κ
2 − 2τ

λs,3 − λs,2
eλs,2t

+ 2λs,3τ
2 − λs,3κ

2 − 2τ

λs,2 − λs,3
eλs,3t

)]
1

κ2 − 4τ 2 ,

(A49)

where θ0, ω0 denote the initial conditions of the averages
and σ 2

θ ,0, σθ ,ω,0, σ 2
ω,0 represent the initial conditions of the

covariances.

b. Semianalytical solution of inhomogeneous equations

The general solution of the inhomogeneous ODE ẏ =
Ay + b(t) with time-independent coefficient A is given by
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the sum of the homogeneous solution and an inhomoge-
neous contribution yin(t):

yODE(t) = yh(t) + yin(t),

= yh(t) + U(t)
∫ t

0
U−1(t′)b(t′)dt′. (A50)

We provide a semianalytical solution, which leaves the
integration of inhomogeneity bd(t) to a numerical rou-
tine. This enables us to flexibly insert a different power
function P(t). The ω components of the inhomogeneous
contributions yield

μω,in(t) = 1
λd,1 − λd,2

[
λd,1eλd,1t

∫ t

0
P(t′)e−λd,1t′dt′ − λd,2eλd,2t

∫ t

0
P(t′)e−λd,2t′dt′

]
, (A51)

σ 2
ω,in(t) = D2

κ2 − 4τ 2

[
2τ 2

λs,1
(1 − eλs,1t) + 2τ/λs,2 − 2τ 2 + κ2

λs,3 − λs,2
(1 − eλs,2t)

+ 2τ/λs,3 − 2τ 2 + κ2

λs,2 − λs,3
(1 − eλs,3t)

]
. (A52)

The deterministic part μω,in(t) contains an integral over
the deterministic power imbalance P(t), which we can
compute numerically for any power function. However,
the factors e−λt in Eq. (A51) can become very large as
λ < 0 for stable systems, thus causing numerical problems.
To use this semianalytical solution during neural network
training, one has to mitigate these numerical problems. We
did this by restricting the parameter space to ensure that λ

does not become too large (Appendix B).
Note that we only require the marginal probability den-

sity P(ω; t) = ∫ P(θ , ω; t) dθ to model the grid frequency
dynamics; hence, we only needed a closed-form solution
for μω and σω.

APPENDIX B: PARAMETER SCALING AND
CONSTRAINTS

The developed PIML model includes a layer that
rescales the parameters and ensures some physical con-
strains [Fig. 1(d)]. The outputs uj of the FFNN do not
necessarily fulfil the physical constraints of parameters ϑj
(cf. Table IV), as the linear activation of the output takes
arbitrary real values, while τ , for example, only takes pos-
itive real values. Moreover, the physical parameters ϑj
vary strongly in scale (cf. Table III), but outputs uj of the
initialized FFNN typically have the same scale due to uni-
form random initialization of the weights [65]. This will
yield large initial errors along certain parameter axes, thus
leading to inhomogeneous loss landscapes that can make
optimization inefficient and more difficult [41].

Therefore, we added a constraint and scaling layer
that applies functions νj to the FFNN outputs. The
results then represent the parameter estimates ϑj = νj (uj ).
First, functions νj enforce the physical constraints. For
example, a softplus function S+(u) = log(exp(u) + 1) ∈
(0, ∞) enforces positivity, and the sigmoid function Sig(u)

= (1 + exp(−u))−1 ∈ (0, 1) was used to ensure that τ ≤
κ/2 holds. Numerical imprecision can lead to a viola-
tion of these constraints, so we added a safety factor δ =
0.999 in some cases. Second, factors sj , which mirror the
typical scale of parameters ϑj , are applied to make the
optimization more efficient. Third, minimum values are
added in certain cases to ensure numerical stability during
optimization. For example, a very small standard devi-
ation σω,0 can lead to probability densities beyond float
precision. All in all, we defined the following functions
using minimum values, scaling factors, and constraints
from Table IV:

ν1(u1) = S+(u1)s1 + v1,

ν2(u2) = δ tanh(u1)ν1(u1)ν3(u3),

ν3(u3) = S+(u3)s3 + v3,

ν4(u4) =
(

2v4

ν5(u5)
+ δSig(u4)

(
1 − 2v4

ν5(u5)

))
ν5(u5)

2
,

ν5(u5) = S+(u5)s5 + v5,

ν6(u6) = S+(u6)s6 + v6,

νj (uj ) = uj sj for j ∈ {7, 8, 9, 10},
ν11(u11) = u11s11.

To test the impact of the scaling with sj , we varied the
scaling parameters according to Table IV. In particular, we
trained the PIML model for each combination of the indi-
vidual scaling choices listed in the table. For each scaling
tuple, we additionally simulated ten different random ini-
tializations of the FFNN weights. Finally, we trained ten
initializations using the standard scaling defined in Table
IV and no scaling with sj = 1 (cf. Sec. III B).
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TABLE IV. Properties of dynamical system parameters that are predicted by the FFNN [cf. Fig. 1(d)]. The parameters are subject to
several physical constraints, which are summarized in the third row. The output of the FFNN is rescaled by constant factors listed in
the fourth row to improve training efficiency (referred to as the standard scaling). To test the impact of the scaling, we varied scaling sj
according to the parameter choices in the fifth row. Furthermore, we ensure that the dynamical system parameter exceeds a minimum
value listed in the sixth row.

Parameter ϑj ϑ1 ϑ2 ϑ3 ϑ4 ϑ5 ϑ6 ϑ7,...,10 ϑ11
Name σθ ,0 σθ ,ω,0 σω,0 τ κ D q1,...,4 r
Physical constraints σθ ,0 > 0 |σθ ,ω,0| ≤ σθ ,0σω,0 σω,0 > 0 0 < τ ≤ κ/2 κ > 0 D > 0 q1,...,4 ∈ R r ∈ R

Standard scaling sj 1 · · · 0.1 · · · 100 0.01 10−3 10−6

Scaling variation {1} · · · {0.1} · · · {1000, 100} {0.01, 0.1} {10−3, 10−2} {10−5, 10−6}
Minimum vj 10−3 · · · 10−3 10 30 10−4 · · · · · ·
Range of νj (uj ) (v1, ∞) (−σθ ,0σω,0, σθ ,0σω,0) (v3, ∞) (v4, κ/2) (v5, ∞) (v6, ∞) (−∞, ∞) (−∞, ∞)
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