001019426 001__ 1019426
001019426 005__ 20240116084328.0
001019426 0247_ $$2doi$$a10.1007/S11227-023-05335-8
001019426 0247_ $$2datacite_doi$$a10.34734/FZJ-2023-05383
001019426 0247_ $$2WOS$$aWOS:000986134900005
001019426 037__ $$aFZJ-2023-05383
001019426 041__ $$aEnglish
001019426 082__ $$a620
001019426 1001_ $$0P:(DE-HGF)0$$aMazumbar, Somnath$$b0$$eCorresponding author
001019426 245__ $$aNoC-based hardware software co-design framework for dataflow thread management
001019426 260__ $$bSpringer Science + Business Media B.V$$c2023
001019426 3367_ $$2DRIVER$$aarticle
001019426 3367_ $$2DataCite$$aOutput Types/Journal article
001019426 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1702994342_18144
001019426 3367_ $$2BibTeX$$aARTICLE
001019426 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001019426 3367_ $$00$$2EndNote$$aJournal Article
001019426 520__ $$aApplications running in a large and complex manycore system can significantly benefit from adopting the dataflow model of computation. In a dataflow execution environment, a thread can run only if all its required inputs are available. While the potential benefits are large, it is not trivial to improve resource utilization and energy efficiency by focusing on dataflow thread execution models (i.e., the ways specifying how the threads adhering to a dataflow model of computation execute on a given compute/communication architecture). This paper proposes and implements a hardware-software co-design-based dataflow threads management framework. It works at the Network-on-Chip (NoC) level and consists of three stages. The first stage focuses on a fast and effective thread distribution policy. The next stage proposes an approach that adds reconfigurability to a 2D mesh NoC via customized instructions to manage the dataflow thread distribution. Finally, a 2D mesh and ring-based hybrid NoC is proposed for better scalability and higher performance. This work can be considered a primary reference framework from which extensions can be carried out.
001019426 536__ $$0G:(DE-HGF)POF4-5122$$a5122 - Future Computing & Big Data Systems (POF4-512)$$cPOF4-512$$fPOF IV$$x0
001019426 7001_ $$0P:(DE-HGF)0$$aScionti, Alberto$$b1
001019426 7001_ $$0P:(DE-HGF)0$$aZuckernam, Stephane$$b2
001019426 7001_ $$0P:(DE-Juel1)177768$$aPortero, Antonio$$b3
001019426 773__ $$0PERI:(DE-600)1479917-0$$a10.1007/S11227-023-05335-8$$p17983-18020$$tThe journal of supercomputing$$v79$$x0920-8542$$y2023
001019426 8564_ $$uhttps://juser.fz-juelich.de/record/1019426/files/s11227-023-05335-8-1.pdf$$yOpenAccess
001019426 8564_ $$uhttps://juser.fz-juelich.de/record/1019426/files/s11227-023-05335-8-1.gif?subformat=icon$$xicon$$yOpenAccess
001019426 8564_ $$uhttps://juser.fz-juelich.de/record/1019426/files/s11227-023-05335-8-1.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
001019426 8564_ $$uhttps://juser.fz-juelich.de/record/1019426/files/s11227-023-05335-8-1.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
001019426 8564_ $$uhttps://juser.fz-juelich.de/record/1019426/files/s11227-023-05335-8-1.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
001019426 909CO $$ooai:juser.fz-juelich.de:1019426$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
001019426 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)177768$$aForschungszentrum Jülich$$b3$$kFZJ
001019426 9131_ $$0G:(DE-HGF)POF4-512$$1G:(DE-HGF)POF4-510$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5122$$aDE-HGF$$bKey Technologies$$lEngineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action$$vSupercomputing & Big Data Infrastructures$$x0
001019426 9141_ $$y2023
001019426 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-08-19
001019426 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2023-08-19
001019426 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2023-08-19
001019426 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
001019426 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2023-08-19
001019426 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ SUPERCOMPUT : 2022$$d2023-08-19
001019426 915__ $$0StatID:(DE-HGF)3002$$2StatID$$aDEAL Springer$$d2023-08-19$$wger
001019426 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2023-08-19
001019426 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2023-08-19
001019426 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001019426 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2023-08-19
001019426 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2023-08-19
001019426 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2023-08-19
001019426 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2023-08-19$$wger
001019426 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2023-08-19
001019426 920__ $$lyes
001019426 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x0
001019426 9201_ $$0I:(DE-Juel1)VDB1106$$kIAS$$lInstitute for Advanced Simulation$$x1
001019426 980__ $$ajournal
001019426 980__ $$aVDB
001019426 980__ $$aUNRESTRICTED
001019426 980__ $$aI:(DE-Juel1)JSC-20090406
001019426 980__ $$aI:(DE-Juel1)VDB1106
001019426 9801_ $$aFullTexts