001     1019426
005     20240116084328.0
024 7 _ |a 10.1007/S11227-023-05335-8
|2 doi
024 7 _ |a 10.34734/FZJ-2023-05383
|2 datacite_doi
024 7 _ |a WOS:000986134900005
|2 WOS
037 _ _ |a FZJ-2023-05383
041 _ _ |a English
082 _ _ |a 620
100 1 _ |a Mazumbar, Somnath
|0 P:(DE-HGF)0
|b 0
|e Corresponding author
245 _ _ |a NoC-based hardware software co-design framework for dataflow thread management
260 _ _ |c 2023
|b Springer Science + Business Media B.V
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1702994342_18144
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Applications running in a large and complex manycore system can significantly benefit from adopting the dataflow model of computation. In a dataflow execution environment, a thread can run only if all its required inputs are available. While the potential benefits are large, it is not trivial to improve resource utilization and energy efficiency by focusing on dataflow thread execution models (i.e., the ways specifying how the threads adhering to a dataflow model of computation execute on a given compute/communication architecture). This paper proposes and implements a hardware-software co-design-based dataflow threads management framework. It works at the Network-on-Chip (NoC) level and consists of three stages. The first stage focuses on a fast and effective thread distribution policy. The next stage proposes an approach that adds reconfigurability to a 2D mesh NoC via customized instructions to manage the dataflow thread distribution. Finally, a 2D mesh and ring-based hybrid NoC is proposed for better scalability and higher performance. This work can be considered a primary reference framework from which extensions can be carried out.
536 _ _ |a 5122 - Future Computing & Big Data Systems (POF4-512)
|0 G:(DE-HGF)POF4-5122
|c POF4-512
|f POF IV
|x 0
700 1 _ |a Scionti, Alberto
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Zuckernam, Stephane
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Portero, Antonio
|0 P:(DE-Juel1)177768
|b 3
773 _ _ |a 10.1007/S11227-023-05335-8
|0 PERI:(DE-600)1479917-0
|p 17983-18020
|t The journal of supercomputing
|v 79
|y 2023
|x 0920-8542
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/1019426/files/s11227-023-05335-8-1.pdf
856 4 _ |y OpenAccess
|x icon
|u https://juser.fz-juelich.de/record/1019426/files/s11227-023-05335-8-1.gif?subformat=icon
856 4 _ |y OpenAccess
|x icon-1440
|u https://juser.fz-juelich.de/record/1019426/files/s11227-023-05335-8-1.jpg?subformat=icon-1440
856 4 _ |y OpenAccess
|x icon-180
|u https://juser.fz-juelich.de/record/1019426/files/s11227-023-05335-8-1.jpg?subformat=icon-180
856 4 _ |y OpenAccess
|x icon-640
|u https://juser.fz-juelich.de/record/1019426/files/s11227-023-05335-8-1.jpg?subformat=icon-640
909 C O |o oai:juser.fz-juelich.de:1019426
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)177768
913 1 _ |a DE-HGF
|b Key Technologies
|l Engineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action
|1 G:(DE-HGF)POF4-510
|0 G:(DE-HGF)POF4-512
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Supercomputing & Big Data Infrastructures
|9 G:(DE-HGF)POF4-5122
|x 0
914 1 _ |y 2023
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2023-08-19
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2023-08-19
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2023-08-19
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2023-08-19
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b J SUPERCOMPUT : 2022
|d 2023-08-19
915 _ _ |a DEAL Springer
|0 StatID:(DE-HGF)3002
|2 StatID
|d 2023-08-19
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2023-08-19
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2023-08-19
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2023-08-19
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
|d 2023-08-19
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2023-08-19
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2023-08-19
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2023-08-19
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)JSC-20090406
|k JSC
|l Jülich Supercomputing Center
|x 0
920 1 _ |0 I:(DE-Juel1)VDB1106
|k IAS
|l Institute for Advanced Simulation
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)JSC-20090406
980 _ _ |a I:(DE-Juel1)VDB1106
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21