001     1019430
005     20250206215501.0
024 7 _ |a 10.1103/PRXQuantum.4.030335
|2 doi
024 7 _ |a 10.34734/FZJ-2023-05387
|2 datacite_doi
024 7 _ |a WOS:001123002800001
|2 WOS
037 _ _ |a FZJ-2023-05387
041 _ _ |a English
082 _ _ |a 530
100 1 _ |a Misra-Spieldenner, Aditi
|0 P:(DE-Juel1)187545
|b 0
245 _ _ |a Mean-Field Approximate Optimization Algorithm
260 _ _ |a College Park, MD
|c 2023
|b American Physical Society
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1738825092_24858
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The quantum approximate optimization algorithm (QAOA) is suggested as a promising application on early quantum computers. Here a quantum-inspired classical algorithm, the mean-field approximate optimization algorithm (mean-field AOA), is developed by replacement of the quantum evolution of the QAOA with classical spin dynamics through the mean-field approximation. Because of the alternating structure of the QAOA, this classical dynamics can be found exactly for any number of QAOA layers. We benchmark its performance against the QAOA on the Sherrington-Kirkpatrick model and the partition problem, and find that the mean-field AOA outperforms the QAOA in both cases for most instances. Our algorithm can thus serve as a tool to delineate optimization problems that can be solved classically from those that cannot, i.e., we believe that it will help to identify instances where a true quantum advantage can be expected from the QAOA. To quantify quantum fluctuations around the mean-field trajectories, we solve an effective scattering problem in time, which is characterized by a spectrum of time-dependent Lyapunov exponents. These provide an indicator for the hardness of a given optimization problem relative to the mean-field AOA.
536 _ _ |a 5223 - Quantum-Computer Control Systems and Cryoelectronics (POF4-522)
|0 G:(DE-HGF)POF4-5223
|c POF4-522
|f POF IV
|x 0
536 _ _ |a Verbundprojekt: Digital-Analoge Quantencomputer (DAQC) - Teilvorhaben: DAQC Kontrolle, Kalibrierung und Charakterisierung (13N15688)
|0 G:(BMBF)13N15688
|c 13N15688
|x 1
536 _ _ |a Verbundprojekt, Quantum Artificial Intelligence for the Automotive Industry (Q(AI)2) - Teilvorhaben: Implementierung, Benchmarking, und Management (13N15584)
|0 G:(BMBF)13N15584
|c 13N15584
|x 2
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Bode, Tim
|0 P:(DE-Juel1)195623
|b 1
|e Corresponding author
700 1 _ |a Schuhmacher, Peter K.
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Stollenwerk, Tobias
|0 P:(DE-Juel1)194697
|b 3
700 1 _ |a Bagrets, Dmitry
|0 P:(DE-Juel1)194613
|b 4
700 1 _ |a Wilhelm-Mauch, Frank
|0 P:(DE-Juel1)184630
|b 5
773 _ _ |a 10.1103/PRXQuantum.4.030335
|g Vol. 4, no. 3, p. 030335
|0 PERI:(DE-600)3063626-7
|n 3
|p 030335
|t PRX quantum
|v 4
|y 2023
|x 2691-3399
856 4 _ |u https://juser.fz-juelich.de/record/1019430/files/INV_23_AUG_011649.pdf
856 4 _ |u https://juser.fz-juelich.de/record/1019430/files/INV_23_AUG_011649.gif?subformat=icon
|x icon
856 4 _ |u https://juser.fz-juelich.de/record/1019430/files/INV_23_AUG_011649.jpg?subformat=icon-1440
|x icon-1440
856 4 _ |u https://juser.fz-juelich.de/record/1019430/files/INV_23_AUG_011649.jpg?subformat=icon-180
|x icon-180
856 4 _ |u https://juser.fz-juelich.de/record/1019430/files/INV_23_AUG_011649.jpg?subformat=icon-640
|x icon-640
856 4 _ |u https://juser.fz-juelich.de/record/1019430/files/PRXQuantum.4.030335.pdf
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/1019430/files/PRXQuantum.4.030335.gif?subformat=icon
|x icon
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/1019430/files/PRXQuantum.4.030335.jpg?subformat=icon-1440
|x icon-1440
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/1019430/files/PRXQuantum.4.030335.jpg?subformat=icon-180
|x icon-180
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/1019430/files/PRXQuantum.4.030335.jpg?subformat=icon-640
|x icon-640
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:1019430
|p openaire
|p open_access
|p OpenAPC
|p driver
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)187545
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)195623
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)194697
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)194613
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)184630
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-522
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Quantum Computing
|9 G:(DE-HGF)POF4-5223
|x 0
914 1 _ |y 2023
915 p c |a APC keys set
|0 PC:(DE-HGF)0000
|2 APC
915 p c |a Local Funding
|0 PC:(DE-HGF)0001
|2 APC
915 p c |a DFG OA Publikationskosten
|0 PC:(DE-HGF)0002
|2 APC
915 p c |a DOAJ Journal
|0 PC:(DE-HGF)0003
|2 APC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2023-10-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2023-10-27
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b PRX QUANTUM : 2022
|d 2023-10-27
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b PRX QUANTUM : 2022
|d 2023-10-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2021-12-20T16:22:33Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2021-12-20T16:22:33Z
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2023-10-27
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2023-10-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2023-10-27
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Anonymous peer review
|d 2021-12-20T16:22:33Z
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2023-10-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2023-10-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2023-10-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2023-10-27
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)PGI-12-20200716
|k PGI-12
|l Quantum Computing Analytics
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)PGI-12-20200716
980 _ _ |a APC
980 _ _ |a UNRESTRICTED
980 1 _ |a APC
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21