001019431 001__ 1019431
001019431 005__ 20240226075512.0
001019431 0247_ $$2doi$$a10.1021/jacs.2c13653
001019431 0247_ $$2ISSN$$a0002-7863
001019431 0247_ $$2ISSN$$a1520-5126
001019431 0247_ $$2ISSN$$a1943-2984
001019431 0247_ $$2datacite_doi$$a10.34734/FZJ-2023-05388
001019431 0247_ $$2pmid$$a37062072
001019431 0247_ $$2WOS$$aWOS:000974384000001
001019431 037__ $$aFZJ-2023-05388
001019431 082__ $$a540
001019431 1001_ $$00000-0001-8405-5583$$aHautke, Alexander$$b0
001019431 245__ $$aCAG-Repeat RNA Hairpin Folding and Recruitment to Nuclear Speckles with a Pivotal Role of ATP as a Cosolute
001019431 260__ $$aWashington, DC$$bACS Publications$$c2023
001019431 3367_ $$2DRIVER$$aarticle
001019431 3367_ $$2DataCite$$aOutput Types/Journal article
001019431 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1704804455_13784
001019431 3367_ $$2BibTeX$$aARTICLE
001019431 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001019431 3367_ $$00$$2EndNote$$aJournal Article
001019431 520__ $$aA hallmark of Huntington’s disease (HD) is a prolonged polyglutamine sequence in the huntingtin protein and, correspondingly, an expanded cytosine, adenine, and guanine (CAG) triplet repeat region in the mRNA. A majority of studies investigating disease pathology were concerned with toxic huntingtin protein, but the mRNA moved into focus due to its recruitment to RNA foci and emerging novel therapeutic approaches targeting the mRNA. A hallmark of CAG-RNA is that it forms a stable hairpin in vitro which seems to be crucial for specific protein interactions. Using in-cell folding experiments, we show that the CAG-RNA is largely destabilized in cells compared to dilute buffer solutions but remains folded in the cytoplasm and nucleus. Surprisingly, we found the same folding stability in the nucleoplasm and in nuclear speckles under physiological conditions suggesting that CAG-RNA does not undergo a conformational transition upon recruitment to the nuclear speckles. We found that the metabolite adenosine triphosphate (ATP) plays a crucial role in promoting unfolding, enabling its recruitment to nuclear speckles and preserving its mobility. Using in vitro experiments and molecular dynamics simulations, we found that the ATP effects can be attributed to a direct interaction of ATP with the nucleobases of the CAG-RNA rather than ATP acting as “a fuel” for helicase activity. ATP-driven changes in CAG-RNA homeostasis could be disease-relevant since mitochondrial function is affected in HD disease progression leading to a decline in cellular ATP levels.
001019431 536__ $$0G:(DE-HGF)POF4-5111$$a5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511)$$cPOF4-511$$fPOF IV$$x0
001019431 536__ $$0G:(DE-Juel1)cellsinsilico_20200501$$aCells In Silico - Large Scale Tissue Simulations (cellsinsilico_20200501)$$ccellsinsilico_20200501$$fCells In Silico - Large Scale Tissue Simulations$$x1
001019431 536__ $$0G:(GEPRIS)389000774$$aGRK 2450 - GRK 2450: Maßgeschneiderte Multiskalenmethoden für Computersimulationen von nanoskaligen Materialien (389000774)$$c389000774$$x2
001019431 536__ $$0G:(DE-HGF)ZT-I-0003$$aHAF - Helmholtz Analytics Framework (ZT-I-0003)$$cZT-I-0003$$x3
001019431 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001019431 7001_ $$0P:(DE-HGF)0$$aVoronin, Arthur$$b1
001019431 7001_ $$0P:(DE-HGF)0$$aIdiris, Fathia$$b2
001019431 7001_ $$0P:(DE-HGF)0$$aRiel, Anton$$b3
001019431 7001_ $$0P:(DE-HGF)0$$aLindner, Felix$$b4
001019431 7001_ $$0P:(DE-HGF)0$$aLelièvre-Büttner, Amandine$$b5
001019431 7001_ $$0P:(DE-HGF)0$$aZhu, Jikang$$b6
001019431 7001_ $$0P:(DE-HGF)0$$aAppel, Bettina$$b7
001019431 7001_ $$00000-0003-0418-1104$$aFatti, Edoardo$$b8
001019431 7001_ $$0P:(DE-HGF)0$$aWeis, Karsten$$b9
001019431 7001_ $$0P:(DE-HGF)0$$aMüller, Sabine$$b10
001019431 7001_ $$0P:(DE-Juel1)173652$$aSchug, Alexander$$b11
001019431 7001_ $$0P:(DE-HGF)0$$aEbbinghaus, Simon$$b12$$eCorresponding author
001019431 773__ $$0PERI:(DE-600)1472210-0$$a10.1021/jacs.2c13653$$gVol. 145, no. 17, p. 9571 - 9583$$n17$$p9571 - 9583$$tJournal of the American Chemical Society$$v145$$x0002-7863$$y2023
001019431 8564_ $$uhttps://juser.fz-juelich.de/record/1019431/files/FZJ-2023-05388.pdf$$yOpenAccess
001019431 8564_ $$uhttps://juser.fz-juelich.de/record/1019431/files/FZJ-2023-05388.gif?subformat=icon$$xicon$$yOpenAccess
001019431 8564_ $$uhttps://juser.fz-juelich.de/record/1019431/files/FZJ-2023-05388.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
001019431 8564_ $$uhttps://juser.fz-juelich.de/record/1019431/files/FZJ-2023-05388.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
001019431 8564_ $$uhttps://juser.fz-juelich.de/record/1019431/files/FZJ-2023-05388.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
001019431 909CO $$ooai:juser.fz-juelich.de:1019431$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
001019431 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)173652$$aForschungszentrum Jülich$$b11$$kFZJ
001019431 9131_ $$0G:(DE-HGF)POF4-511$$1G:(DE-HGF)POF4-510$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5111$$aDE-HGF$$bKey Technologies$$lEngineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action$$vEnabling Computational- & Data-Intensive Science and Engineering$$x0
001019431 9141_ $$y2023
001019431 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-10-21
001019431 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2023-10-21
001019431 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2023-10-21
001019431 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2023-10-21
001019431 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2023-10-21
001019431 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ AM CHEM SOC : 2022$$d2023-10-21
001019431 915__ $$0StatID:(DE-HGF)9910$$2StatID$$aIF >= 10$$bJ AM CHEM SOC : 2022$$d2023-10-21
001019431 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2023-10-21
001019431 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2023-10-21
001019431 915__ $$0StatID:(DE-HGF)1210$$2StatID$$aDBCoverage$$bIndex Chemicus$$d2023-10-21
001019431 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2023-10-21
001019431 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2023-10-21
001019431 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001019431 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2023-10-21
001019431 915__ $$0StatID:(DE-HGF)1200$$2StatID$$aDBCoverage$$bChemical Reactions$$d2023-10-21
001019431 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2023-10-21
001019431 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
001019431 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2023-10-21$$wger
001019431 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2023-10-21
001019431 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x0
001019431 980__ $$ajournal
001019431 980__ $$aVDB
001019431 980__ $$aUNRESTRICTED
001019431 980__ $$aI:(DE-Juel1)JSC-20090406
001019431 9801_ $$aFullTexts