
COMPESCE: A Co-design Approach for memory

subsystem Performance Analysis in HPC

many-cores

Antoni Portero1[0000−0003−1319−6404], Carlos Falquez1[0000−0003−0382−7743], Nam
Ho1[0000−0002−6973−4120], Polydoros Petrakis2[0000−0002−0224−5808], Stepan

Nassyr1[0000−0002−0035−244X], Manolis Marazakis2[0000−0002−4768−3289], Romain
Dolbeau3[0000−0002−4466−8948], Jorge Alejandro Nocua

Cifuentes4[0000−0003−1148−7697], Luis Bertran Alvarez4[0009−0006−0380−0953],
Dirk Pleiter5[0000−0001−7296−7817], and Estela Suarez1[0000−0003−0748−7264]

1 Jülich Supercomputing Centre, Novel System Architectures Design,
Forschungszentrum Jülich GmbH, Jülich, Germany {a.portero, c.falquez,

n.ho, s.nassyr, e.suarez}@fz-juelich.de
2 Institute of Computer Science, Foundation for Research and Technology - Hellas

(FORTH), Heraklion, Greece {ppetrak,maraz}@ics.forth.gr
3 SiPearl, Rennes, France romain.dolbeau@sipearl.com

4 ATOS, Les Clayes-sous-Bois, France
{luis.bertranalvarez@atos.net,alejandro.nocua}@atos.net

5 KTH, Royal Institute of Technology Stockholm, Sweden pleiter@kth.se

Abstract. This paper explores the memory subsystem design through
gem5 simulations of a non-uniform memory access (NUMA) architec-
ture with ARM cores equipped with vector engines. And connected to
a Network-on-Chip (NoC) following the Coherent Hub Interface (CHI)
protocol. The study quanti�es the bene�ts of vectorization, prefetching,
and multichannel NoC con�gurations using a benchmark for generating
memory patterns and indexed accesses. The outcomes provide insights
into improving bus utilization and bandwidth and reducing stalls in the
system. The paper proposes hardware/software (HW/SW) advancements
to reach and use the HBM device with a higher percentage than 80% at
the memory controllers in the simulated manycore system.

Keywords: Co-design · HPC · Network on Chip · gem5

1 Introduction

ARM-based high-performance processors have lately joined the High-performance
computing (HPC) sector, appearing on the Top500 list and proving that ARM-
based systems can deliver signi�cantly high computing performance [1]. An ex-
ample of a relatively recent successful deployment of ARM-based systems is the
Fugaku supercomputer at Riken. Being ranked #1 on the Top500 list in 2020 [2],
the Fugaku supercomputer outperformed all competitors by using the Fujitsu

2 Antoni Portero, Carlos Falquez, Nam Ho, et al.

A64FX processor, one of the most potent ARM-based processors available to-
day [3] [4]. Key innovations that led to the success of the Fugaku design are the
Scalable Vector Extension (SVE) � a SIMD extension introduced by ARM [5,6].

This paper explores a path for accurately simulating an HPC chiplet-based
processor [7]. To do this, we simulate the system before building the silicon and
perform co-design exploration to determine the optimal hardware parameters for
executing applications and kernels of interest. Such kernels, which are abstrac-
tions of the most characteristic HPC codes, represent the most computationally
and memory intensive parts of the software that runs on a supercomputer.

The primary focus or this paper is the memory system, which o�ers more
potential for improvement than the Central Processing Unit (CPU). Processors
in the market implementing the AArch64 architecture already include the SVE.

Besides, the memory system design must be large enough to handle applica-
tions, libraries and codes with high bandwidth demands, rather than linear al-
gebra programs such as GEneral Matrix to matrix MultiplicationS (i.e. HPL [8],
GEMMS) architectures [9].

The HW/SW co-design approach relies on a reliable and accurate hardware
simulation via the gem5 simulator [34]. The gem5 simulator is a modular, open-
source, computer-system architecture research platform containing system-level
architecture and processor microarchitecture features. The simulation setup de-
scription follows the AMBA-CHI protocol implemented in gem5 Ruby for the
network. Furthermore, it provides a cycle-accurate model of the CPU [10].

The benchmark selected for our study is Spatter [11], which provides a tun-
able and con�gurable framework to test a variety of indexed access patterns,
including variations of the Gather/Scatter patterns that are observed in HPC
applications.

Our setup depicts a part of the chiplet with all its components. It is a set of
RISC CPUs supporting the Scalable Vector Extension (SVE). These CPU cores
are connected with a two-dimensional mesh Network-on-Chip (2D MESH NoC).
The simulated setup has similar hardware components as encountered in current
state-of-the-art hardware designs as A64FX[12], Graviton2 [13] or Graviton3 [14].
The paper explores the most critical knobs for optimising the memory subsystem.
The results show a con�guration that can bene�t from external memory modules
of High Bandwidth Memory (HBM2 [30])). A rational explanation about the
speci�c architecture decisions are described further in the paper (see section 4
Fig. 1a presents a diagram of the architecture, and the speci�c values for the
simulations are in Table 1, �rst column).

The contributions of the paper can be divided into two categories:

� The paper presents a HW/SW co-design methodology that can help to create
a manycore processor for an HPC system in which the memory system is
composed of a NoC AMBA-CHI con�guration where the memory controller
utilisation is higher than 80%. In terms of bandwidth, the System Cache
Group (SCG) (which corresponds to a quadrant of the chiplet) achieves
more than 250 GB/s; if the chiplet is composed of four quadrants and each

COMPESCE: A Co-design Approach for memory Perf. Analysis in HPC 3

quadrant has one HBM2 [18] module, the chiplet would reach a bandwidth
higher than 1 TB/s.

� The paper describes the main components involved and how to employ them
to get such bandwidth performance. Our records show that few manycore
processor chips can deal deftly with HBM [16], and in manycore systems,
the NoC or memory wall could be the bottleneck of all system [15].

The rest of the paper can be divided into seven sections. Section 2 presents
the background and motivation. Section 3 explains the related work. Section
4 depicts the proposed HPC architecture; section 5 describes the design space
exploration methodology. Section 6 presents the case studies. Finally, the last
section has the conclusions and future work.

2 Background and Motivation

The research objective is to reproduce a methodology via simulations of the
proper architecture that ultimately bene�ts from the external HBM memories
where the sustainable bandwidth (BW) at the CPUs is 80% or higher.

Existing, many-core designs bene�t from HBM modules [16], but without the
correct co-design for new designs, the NoC can become a bottleneck [15].

The Fujitsu A64FX [19] CPU has a sustainable bandwidth of 62% when
running the Stream benchmark (triad) [20]; unless z�ll compile �ag is speci�ed,
which eliminates unnecessary memory accesses, then the bandwidth achieved is
80%�allowing a high usage of the external HBM devices.

Although the research question can be broader, the technical challenge is if
achieving one terabyte per second in a manycore chiplet with 64 ARM cores
armed with SVE 2x256bits, and which network-on-chip design would allow such
performance?

The signi�cance of the research is related to uncovering architectures that
attenuate the memory wall, which implies solving the processor/memory perfor-
mance gap. The memory wall limits many current HPC computation applica-
tions [21]. Therefore, memory-bound codes pro�t from the highest sustainable
bandwidth at the core level. This research manuscript's signi�cance and rele-
vance are �nding strategies to achieve the correct usage of the HBMs and which
are the leading software and hardware features that bring an optimal design.

The paper innovations are about the Design Space Exploration (DSE) method-
ology to encounter optimal design, where the complex problem of the optimal
memory system splits into more tractable subproblems with uni-direction con-
straints propagation. The quantitative assessment for the optimal architecture
features, how the benchmarks are utilised to stress the memory system and ob-
serve stalls, how to detect them, and o�er solutions. Many experiments use the
Spatter [11] benchmark. The microbenchmark Spatter is used to assess the im-
pact of indexed access patterns of Gather and Scatter (G/S) operations, which
are widely used in many modern HPC applications. The design of Spatter is

4 Antoni Portero, Carlos Falquez, Nam Ho, et al.

composed of Gather and Scatter kernels that enable users to benchmark di�er-
ent access patterns to understand the implications of memory prefetching and
compiler development.

3 Related work

Our e�ort goes toward co-designing the memory subsystem for an HPC archi-
tecture based on RISC CPUs technology. Similar previous works are Qureshi,
Yasir Mahmood at al. [23] with gem5-X an infrastructure to simulate an Out-of-
Order cluster with 3D high-performance memory (HBM2). But our e�ort, rather
than embedded systems, emphasises HPC architectures, adding Vector Engines
to the CPUs and networks with high bandwidth and low latencies. Our simula-
tion choice was gem5[34] because it is a full-system (FS) architectural simulator
widely used in academia and industry, as it supports multiple Instruction Set
Architectures (ISAs), such as x86, ARMv8, RISCV, and others. In addition to
various ISAs, it supports di�erent CPU models for these ISAs, such as atomic,
in-order, and out-of-order (OoO) CPU models, as well as multiple caching pro-
tocols and coherences. On the memory side, it supports many traditional and
emerging memories. Further, gem5 supports FS simulations via several Linux-
based operating systems, enabling applications to execute as they would on a
real platform. Although gem5 is cycle-accurate and detailed in statistics created
during execution, the turnaround is a long simulation time.

Other simulators for co-design of HPC systems are based on SystemC-TLM
[35] plus QEMU; however, such a description can miss details on the out-of-order
paths or trace base [36], where traces must come from a very similar architecture
and hence not e�ective for detailed and heterogenous design exploration. Other
simulators have their niche [37,38,39] for speci�c ISAs, but gem5 is more publicly
proven.

4 HPC architecture

The architecture selected for the simulation is in several parameters similar to
the Graviton3 (G3). The G3 comprises 64 Neoverse-V1 [40] cores, and each tile
of the NoC or CPU has two cores with two SVE of 256 bits. Here, we describe
the main di�erences between our setup de�ned as Open Processor for Inception

Systems OPIS (see Table 1 parameters details), the G3 architecture, and A64FX.
The simulated designs [10] setup is not outside the parameters ARM o�ers for
their architectures. Moreover, we employ it to explore the memory system. For
this study, when there is slack, we always take the larger size of the memories,
but we design the decision to keep the two cores per tile as G3. In the case of G3,
there is only one NUMA domain for the complete chiplet, while our setup has 4
NUMA domains of 16 cores each, also called System Cache Groups (SCGs). The
design is for the SCG2 quadrant: the NUMA domain on the top-left of the chiplet
(see Fig. 1a). Another di�erence is that G3 is connected to four external Double
Data Rate (DDR5) memories with eight channels for 64 cores, while we are

COMPESCE: A Co-design Approach for memory Perf. Analysis in HPC 5

simulating a con�guration with four HBM2 modules with 32 memory channels
in total. We only simulate one SCG, with one HBM2 module and eight channels,
with 35.82 GiB/s per channel. G3 can exhaust the bandwidth with a few cores
executing a memory-bound application like STREAM. The ARM CMN-700 [41]
for G3 setup seems to follow an LVS1 strategy, meaning one channel per Virtual
Network (VNET).

At the same time, we are exploring a higher number of VNETs (i.e. LVS2)
to bene�t from the higher bandwidth available from the HBM2.

OPIS SCG (gem5) Architectural Parameters

Clocks System: 1.6 GHz; CPU: 2.4 GHz; NoC: 2.0 Ghz

CPU #Cores: 16; Adjusted A76; Branch Pred.: BiMode;
Vector Unit: 2xSVE; None, SVE length:{256}

L1 Line size: 64B; Size: 64∼KiB; Associativity: 4-way;
Inclusion policy: strict inclusive ; TBEs: 256;
Hit latency: 2-cycles (L1-D), 1-cycles (L1-I);

L2 Uni�ed cache; Line size: 64B; Size: 1 MiB;
Associativity: 8-way; Hit latency: 4-cycles;
Inclusion policy: strict inclusive ; TBEs: 256 ;

SLC Shared SLC cache; #Slices: 16; Line size: 64B;
Associativity: 16-way; Hit latency: 20-cycles;
Inclusion policy: Exclusive; TBEs: 256 per slice;
Size per slice: 4 MiB;

NoC Interconnect: CMN-650, Model: Garnet 3.0; Protocol: AMBA-CHI;
Flit width: 64B; Router latency: 1-cycle;
Link latency: 1-cycle; #VNETs: {lvs1:4, lvs2:7} ; Routing XY
Topology: Mesh: 4x4;
Link con�guration: {lvs1, lvs2}

Memory Model HBM2; #Channel: 8; Size: 2x8 GiB
Bandwidth per channel: 35.82 GiB/s

Prefetcher o�, on

Table 1: Details of �xed and explored parameters setup for one OPIS SCG
architecture

The main di�erences between G3 and A64FX[25] are that the A64FX can
deal with external HBM memories (see Fugaku arch [26,12]). The A64FX chip
includes four NUMA domains named Core Memory Group (CMG). Each CMG
contains 12 cores for application execution. Each core has an SVE of 2×512
bits instead of the 2×256 like in G3. In addition, the A64FX Tofu network
interconnection is a double-ring bu�er[24] instead of the 2D MESH from G3 and
OPIS.

Prefetcher: Our simulation gem5-based setup supports di�erent prefetching
schemes. In this paper, we focus on the next-line scheme [27], con�gured at the

6 Antoni Portero, Carlos Falquez, Nam Ho, et al.

L2 cache. For every memory access to the L2 cache, the prefetcher immediately
triggers sequential cache accesses (up to 32 cache lines) and stores prefetch candi-
dates in the prefetch queue. Before sending prefetch requests to the memory, the
prefetcher needs to search (snoop) in the cache and drops the prefetch request if
there is duplicate data. The prefetcher and the gather scatter hardware mecha-
nisms are black boxes in G3, while for A64FX, documentation of the mechanisms
is available [25].

MEM
ctrl4

MEM
ctrl6

MEM
ctrl5

CPU15CPU14CPU13CPU12snf7

snf6

snf5

snf4

r3,0 r3,1 r3,2 r3,3

hnf6

hnf3

hnf0 hnf1

hnf4

hnf7

hnf5

hnf2

CPU15

MEM
ctrl7

MEM
ctrl0

MEM
ctrl2

MEM
ctrl1

snf3

snf2

snf1

snf0

MEM
ctrl3

CPU SLC MEM Router

SLC

CPU7CPU6CPU8

r2,0 r2,1 r2,2 r2,3

SLCSLCSLC

CPU5CPU4CPU3CPU4

r1,0 r1,1 r1,2 r1,3

SLCSLCSLC

CPU2CPU1CPU0CPU0

r0,0 r0,1 r0,2 r0,3

SLCSLCSLC

SCG3

SCG0 SCG1

HBM2

HBM2

HBM2

HBM2

MEM

ctrl4

MEM

ctrl6

MEM

ctrl5

CPU15CPU14CPU13CPU12snf7

snf3

snf6

snf2

r0,3 r1,3 r2,3 r3,3

rnf6

hnf6 hnf7

hnf3 hnf4 hnf5

hnf0 hnf1 hnf2

rnf3

rnf0 rnf1

rnf4

rnf7

rnf5

rnf2

CPU15

MEM

ctrl7

MEM

ctrl0

MEM

ctrl2

MEM

ctrl1

snf5

snf1

snf4

snf0

MEM

ctrl3

CPU SLC MEM Router

SLC

CPU7CPU6CPU8

r0,2 r1,2 r2,2 r3,2

SLCSLCSLC

CPU5CPU4CPU3CPU4

r0,1 r1,1 r2,1 r3,1

SLCSLCSLC

CPU2CPU1CPU0

CPU0

r0,0 r1,0 r2,0 r3,0

SLCSLCSLC

(a) System Cache Group (SCG) Diagram

(b) Co-design Methodology: Uni-
directional with constraints prop-
agation for memory subsystem
study.

Fig. 1: a) Chiplet with SCG Diagram, b) Unidirectional Methodology

The Fig 1a) presents a chiplet with 4 NUMA regions in the down part.
Each NUMA region is named SCG0-3 (System Cache Group). Each SCG has
an external HBM2 device connected. Our simulations focus on the SCG2 that
is up-left. In the upper part of Fig 1a, a 2D MESH network is depicted, and
routers are connected in the crosspoints of the SLC/L3 memories and the CPU.
The CPU is composed of 1, 2 or 4 cores with 2x256 SVE vector engines. Each
CPU has a private per core L1 and shared L2 per cluster. The Subordinate
Nodes SN belongs to CHI protocol fundamentals [17]; SNFs nodes connect to
memory devices that back the coherent memory space. Eight SNFs nodes connect
the number of channels of the HBM2 device [18]. The CPUs work as Coherent
Home Nodes (HN-Fs) to compose all requests to coherent memory and issue
snoops to Request Nodes (RN-Fs).

COMPESCE: A Co-design Approach for memory Perf. Analysis in HPC 7

5 Design Space Exploration Methodology

Architecture Virtualisation is fundamental for achieving rapid Design Space Ex-
ploration (DSE) of HPC microprocessors. The HPC systems design space is vast,
with many dimensions to explore. It is the task of the design architects and co-
design developers to evaluate and prioritise the most relevant knobs to get the
most optimal design.

For this paper, our methodology approach follows the near-optimal design
space exploration [28]. In the mentioned DSE, in contrast to existent DSE
methods, the partition between the steps is selected so that they can be con-
nected through unidirectional constraint propagation instead of bidirectional
constraints. This route achieves a near-optimal result because constraints are
not overlooked, which happens when the steps are considered partially indepen-
dent. Moreover, it divides intractable problems into manageable subproblems.

The DSE methodology is applied to evaluate the memory sub-system. The
projected DSE framework pursues step-wise with the division of all the available
design space options into cases that correspond to these sub-problems, where
the top-down division principle rigorously applies to top-down splits, which are
connected through unidirectional constraint propagation.

The architecture exploration considers the SCG, which encloses a set of cores
connected in a mesh NoC. The NoC protocol is CHI [29] and the memory model
that represents a High Bandwidth Memory (HBM2 [30]) (see Fig. 1b).

5.1 Co-design Exploration: Memory sub-system

The �rst split divides the entire design space exploration DSE into two sub-
spaces: On one side, the dimensions that belong to the SW optimisations; on the
other, the dimensions that belong to the HW ones. From the SW side, we are
not experimenting with the di�erent compilers or manual code optimisations.
Instead, vectorisation is a crucial dimension a�ecting the code's performance;
for this study, we use auto-vectorisation. Since the developers must adapt the
code to the platform, e.g. via loop reordering and speci�c �ags for the compiler,
typically, the �rst step is to vectorise the code to enhance the vector engine
utilisation and hence, its in�uence on the performance.

Neoverse V1 Possible knobs value
Chosen

Value

Num cores per tile 1, 2, 4 2
SVE size 2x256 2x256
L2 size 512 KiB OR 1 MiB (4 banks) 1 MiB
SLC size 2 MiB to 4 MiB, 16-way set associative 4 MiB

Table 2: Neoverse V1 knobs �xed for the exploration (in bold)

Regarding the HW size, this sub-space can be divided again between CPU
knobs and NoC knobs. Regarding the CPU knobs, we set them to a speci�c

8 Antoni Portero, Carlos Falquez, Nam Ho, et al.

value: Although the CPU can have 1, 2 or 4 ARM V1 cores, we selected the
two cores' organisation per tile (or in each router) with a total of 16 cores per
SCG (see Fig 1a). One characteristic parameter is the vector size. We speci�ed
2×-width vector units similar to the ARM-V1 architecture [31], with a width
of 256 bits. Although there is also �exibility in the L2 and SLC/L3 sizes, we
always opted for the larger cache sizes. L2 size can be 512 KiB or 1 MiB (4
banks). For the System-level cache (SLC), we have 1 Bank per core duplex and
a size of 2 MiB to 4 MiB, 16-way set associative. Finally, for the memory system
and the CPU, the hardware prefetcher in the L2 is a knob that enhances the
performance.

The other subspace or subproblem related to the network knobs for this
article is the network topology and the routing algorithm. We selected the 2D
Mesh, XY algorithm, again similar to architectures like Graviton3 [32]. The
external memory device is a High Bandwidth Memory (HBM2) [18,23].

Another knob we changed is the number of NoC physical links per VNET
in the routers, intending to �nd the setup that most bene�ts from the external
memory devices. Link-VNET-Support-1 (LVS1) is de�ned as one link per VNET,
where the 4 VNETS de�ned in AMBA-CHI Cache Coherence (CC) protocol are:
0-request, 1-snoop, 2-response and 3-data (REQ, SNP, RSP and DATA). The
second possibility (LVS2) uses two physical links per VNET. In the case of the
snoop VNET (SNP), we still use one link, as there is little tra�c in the examples
under study. Hence, the LVS2 NoC con�guration uses seven links in total.

5.2 Model Validation

To increase the con�dence of the presented results, we have executed kernels in
real machines prototype and compared them with a corresponding gem5 model.
For instance, if the machine is the N1SDP [33] prototype board with two sockets,
each containing 2 ARM-N1 cores. We developed the gem5 version of the plat-
form using the board's datasheet. In addition, we considered the Performance
Monitoring Unit (PMU) counters and compared the results. Finally, we apply a
multi-level consistency validation [10] for reference applications and kernels.

6 Case studies

The section describes the design exploration of the memory sub-system through
the unidirectional with constraints propagation. The subsection de�nes the Spat-
ter Uniform Stride (US) behaviour in the CPU data path. It simpli�es the
compiler generation of Gather/Scatter instructions. Each thread performs some
portion of the iteration. In addition, each thread's block gathers into a local
destination bu�er to ensure high performance. The e�ect avoids false sharing.

The Uniform Stride index bu�er in Spatter is speci�ed with UNIFORM:N:STRIDE.
It generates an index bu�er of size N with STRIDE. For example, the index
bu�er generated by UNIFORM:8:2 is [0,2,4,8,10,12,14,16] or UNIFORM:8:8 is
[0,8,16,24,32,40,48,56]. This manuscript's Spatter Uniform Stride is similar to

COMPESCE: A Co-design Approach for memory Perf. Analysis in HPC 9

the Stream benchmark [20]. The added value o�ers extra information about
the pattern's index of common HPC applications too large for cycle-accurate
simulation.

6.1 Unidirectional approach

The Unidirectional approach with constraints propagation method begins in
the dimension with a higher impact on the outcomes. Then, when the space
exploration dimension is optimised, we continue with the following one with the
constraints from the previous one. Hence, no loops or iterations are needed. For
example, starting from the previous methodology, we observed and analysed the
impact of vectorisation; we then took the vectorised code and used it for the
prefetching e�ect afterwards for the increase of links, the LVS1 vs LVS2 study.
The expectation is to �nd an architecture where the external memory controllers'
usage is 80% or higher. After continuing with the following dimensions, for the
reasons analysed further below.

The dimension under study are a) vectorisation, b) enhancements due to
prefetcher, and c) enhancing the number of links from LVS1 to LVS2. Table 3
presents the improvements due to code vectorisation, which ranges from 23% to
97%. Then we observed the impact of the prefetcher on the bandwidth (see Sub.
Fig. 2a), showing improvements of x2. The Fig. 2b) shows a saturation in the
NoC due LVS1 con�guration.

Spatter Uniform Stride:
BW increase due to vectorisation

Con�guration 8:1 8:2 8:4 8:8 8:16
Performance Improvement(%) 60.3 93.9 96.8 29.3 23

Table 3: Spatter Uniform Stride: Bandwidth increase due to vectorisation

Bandwidth in the SCG with LVS1: We experimented with the OPIS SCG
with LVS1, where we increased the number of cores per CPU. Instead of using
the default SCG with 16 cores, we increased it to 4 and 8 CPUs per router,
having an SCG of 32 cores and 64 cores, respectively, all the cores with the
prefetcher enabled. The objective is to maximise the bus utilisation in the mem-
ory controllers. In addition, we want to observe the optimal use of the HBM2
memory devices. As the number of cores increases, the number of data requests
to the memories increases. We want to observe the Miss Status Holding Register
(MSHR) since it is the bu�er to track outstanding requests.

The results are depicted in Figure 2b, showing the di�erences between the
bandwidth observable in the memory controllers as a percentage of the bus utili-
sation versus the bandwidth reported by the Spatter application. While Spatter
reports a lower bandwidth when the stride increases (as it measures e�ective
bandwidth only), the bus utilisation increases to 75%, which means that from

10 Antoni Portero, Carlos Falquez, Nam Ho, et al.

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

2
0

2
1

2
2

2
3

2
4

B
W

(
G
i
B
/
s
)

Stride (doubles)

lvs1-no-pref-vec.dat
 lvs1-tag-pf.dg32.dat

 lvs1-tag-pf-vec.dg32.dat

(a) Impact of the prefetcher on the band-
width

 0

 50

 100

 150

 200

 250

2
0

2
1

2
2

2
3

2
4

 0

 20

 40

 60

 80

 100
Peak bus

utilisation (~75%)

B
W

(
G
i
B
/
s
)

B
u
s

u
t
i
l
.

D
R
A
M

c
t
r
l
s

(
%
)

Stride (doubles)

Bandwidth SCG-64c (GiB/s)

Bandwidth SCG-32c (GiB/s)

Bandwidth SCG-16c (GiB/s)

Max. bus util DRAM (%) SCG-64c

Max. bus util DRAM (%) SCG-32c

Max. bus util DRAM (%) SCG-16c

(b) Spatter uniform stride with TAG
prefetcher degree 32 executed in OPIS-
SCG (LVS1)

Fig. 2: a) Bandwidth utilisation improvements due to data prefetching, b) HMB2
Bandwidth saturation due to LVS1-NoC.

the 286.56 GiB that can provide the HBM2 module, only 75% (215 GiB/s) is
achieved. Bus bandwidth utilisations start to saturate at stride-8 and 16, even
when using many more cores and increasing the outstanding requests by 4×.

32 cores SCG

64 cores SCG

snf0 snf1 snf2 snf3 snf4 snf5 snf6 snf7

2.96 2.79 2.49 2.42 3.04 2.54 2.57 2.43

2.07 2.09 2.08 2.05 2.06 2.07 2.08 2.05

 2

 4

(a) Memory controllers (snf) stalls in-
crement from baseline (16 cores SCG)
for 32 and 64 cores SCG

r*,3

r*,2

r*,1

r*,0

r0,* r1,* r2,* r3,*

32 cores SCG

1.98 2.07 2.04 2.12

1.86 2.08 5.44 5.26

2.44 2.51 1.99 2.03

0.45 2.04 1.96 2.07

 0.5

 1

 2

 4

 8

r*,3

r*,2

r*,1

r*,0

r0,* r1,* r2,* r3,*

64 cores SCG

0.53 0.54 0.56 0.56

0.55 0.55 8.30 7.99

0.84 0.85 0.55 0.55

0.41 0.55 0.55 0.56

 0.5

 1

 2

 4

 8

ra
tio

 M
S

H
R

/T
B

E
 a

vg
 s

ta
lls

 in
cr

em
en

t r
es

pe
ct

 1
6

co
re

s
S

C
G

(b) SLC (hnf) stalls increment from
baseline (16 cores SCG) for 32 and 64
cores SCG

Fig. 3: a) Stalls in memory controllers, b) stalls in the SLCs memories

Therefore, even when the number of MSHR requests increases since more
cores (i.e. SCG 32 and 64 cores) request data from the memory controllers, the
bandwidth at the memory controllers saturates when it achieves 75% of the peak
HBM2 bandwidth. The LVS1 con�guration can only partially bene�t from the
HBM2 bandwidth available. To understand the reason, we observe the situation
of the TBE_avg (similar to MSHR but named di�erently in the gem5 simulator)
in the routers for the point 24, which is our point of interest. This means there is

COMPESCE: A Co-design Approach for memory Perf. Analysis in HPC 11

saturation in LVS1, and the HBM device provides 3/4 of its bandwidth capacity.
The architects decide if this limitation is economically viable or if using cheaper
devices with lower bandwidth (i.e. DDR5) but larger capacity is a better option.

Increasing stride will downsize the requirements for resource allocation in
the micro-architecture (e.g. register �le allocation) and thus could reduce stalls.
Therefore, with a higher stride, the CPU can stress the memory system by
sending more in-�ight requests. To observe the saturated point of bus bandwidth
utilisation at the memory controller, we ran experiments via a variant stride from
1 to 16. A stride-16 will advise us of the maximum bus bandwidth utilisation.

 VNET-0 REQUEST

r*3

r*2

r*1

r*0

r0*r1*r2*r3*

Router Stalls LVS1

1.0

10.0

100.0

1.0k

10.0k

100.0k

r*3

r*2

r*1

r*0

r0*r1*r2*r3*

Router Stalls LVS2

1.0

10.0

100.0

1.0k

10.0k

N
u
m
b
e
r

o
f

s
t
a
l
l
s

(a)

 VNET-3 DATA

r*3

r*2

r*1

r*0

r0*r1*r2*r3*

Router Stalls LVS1

1.0

10.0

100.0

1.0k

10.0k

100.0k

r*3

r*2

r*1

r*0

r0*r1*r2*r3*

Router Stalls LVS2

1.0

10.0

100.0

1.0k

10.0k

N
u
m
b
e
r

o
f

s
t
a
l
l
s

(b)

Fig. 4: Heatmap with router stalls (LVS1 vs LVS2). (a) REQUEST (b) DATA
VNETs.

Heatmaps of the NoC and memory controllers for LVS1 con�guration

Figure 3a, presents the increment of stalls from the baseline architecture (i.e.
16-core SCG) to the architectures with 32- and 64-core SCG in the memory
controllers. The increment in cores produces more outstanding requests to the
memory controllers. Nevertheless, there are a pair of bottlenecks, a factor of ×3
in stalls in snf0 and snf4 (see Figure 3a), and also a bottleneck in the tiles see
Figure 3b in the routers far away from the memory controllers (i.e. r22, r32),
with increments higher than 5 and 8 times for 32 and 64 cores con�guration,
respectively.

NoC VNET stalls LVS1 vs LVS2 Previous experiments provide enough
insights to suggest that there are better con�gurations than LVS1 to optimise
the usage of the HBM2 devices. Hence, we experimented with the baseline SCG
but with the LVS2 con�guration to observe the stalls in the routers.

Figure 4 presents another heatmap comparing the number of stalls for all the
VNETS; there is no �gure for the SNOOP VNET because the packet tra�c is
meagre in this study, and the RESPOND channel is similar the to REQUEST.

12 Antoni Portero, Carlos Falquez, Nam Ho, et al.

Again, we can observe that the decrease in stalls in LVS2 is a factor of ×10 with
respect LVS1.

 0.1

 1

 10

 100

 1000

 10000

 100000

 1x10
6

 1x10
7

 10 100

#

o
f

s
a
m
p
l
e
s

of cycles

LVS1
LVS2

VNET0: Router flit Network latency hist

(a)

 0.1

 1

 10

 100

 1000

 10000

 100000

 1x10
6

 10

#

o
f

s
a
m
p
l
e
s

of cycles

LVS1
LVS2

VNET3: Router flit Network latency hist

(b)

Fig. 5: Latencies histogram (LVS1 vs LVS2). (a) REQUEST; (b) DATA VNETS.

NoC VNET latencies LVS1 vs LVS2 In the same experiment, we checked
the router �it network latency and created the histogram for the main VNETs.
Figure 5 presents how the network latency reduces from the LVS1 to the LVS2
con�guration.

70%

75%

80%

85%

90%

95%

LVS1-nopf LVS1-pf LVS2-nopf LVS2-pf

 200

 210

 220

 230

 240

 250

 260

 270

B
u
s

u
t
i
l
i
s
a
t
i
o
n

H
B
M
2

c
t
r
l
s

%

B
W

H
B
M
2

(
G
i
B
/
s
)

Fig. 6: Bus utilisation for spatter uniform stride, stride-16 in several OPIS con-
�gurations: LVS1 without and with prefetcher(nopf, pf), LVS2 without and with
prefetcher (nopf, pf)

COMPESCE: A Co-design Approach for memory Perf. Analysis in HPC 13

Bus utilisation in MEM controllers Figure 6 exhibits the simulation out-
comes for uniform stride-16. The memory controllers have a utilisation higher
than 88% (achieving 252,17 GiB) for LVS2 with the prefetcher disabled and 93%
when the prefetcher is enabled. Hence, compared with the LVS1 con�guration,
LVS2 decreases the stalls in the system and increases the bus utilisation. There-
fore, it is recommended to use LVS2 if the external memory is an HBM module
and we are interested in its optimal use. Figure 6 presents the bus utilisation
of each of the eight memory controller con�gurations with and without enabled
prefetcher. The best con�guration is achieved for LVS2 with prefetcher active
(LVS2-pf).

Insight: Conversely, to the intuition adding more links (i.e. LVS1 to LVS2)
without other improvements in the design does not produce better performance.
It is when the combination of several design features like vectorisation and ag-
gressiveness of the prefetcher and extra links in the NoC produces a high usage
of the memory device.

7 Conclusions and future work

The paper presents a methodology to explore the memory subsystem in a many-
core system for HPC connected to HBM devices using the Spatter benchmark.
The methodology permits �nding bottlenecks in the system. For example, it was
able to detect that a NoC con�guration with only one link per VNET (de�ned
as LVS1) can only use 75% of the bandwidth of the HBM2 device. Nevertheless,
the additional analysis allowed us to observe that a con�guration with two links
per VNET (i.e. LVS2), with vectorised code and enough aggressiveness of the
prefetcher, increases resource utilisation above 90% (observation at the memory
controller).

In the future, using novel 3D stacked memory chiplets (i.e. HBM3), we would
like to model new network topologies and routing algorithms other than 2D
MESH to analyse if there are designs that bring bene�t (i.e. reducing stalls and
latencies). Another dimension not described in the paper is the power enve-
lope; it would be relevant to estimate the overheads due to, for example, the
aggressiveness of the prefetching or due to more oversized packet routing buses.
Finally, it is still an open question whether our designs can keep the pace of
future characteristics' external memories and use them e�ciently.

Acknowledgment

This work has been performed in the context of the European Processor Initia-
tive (EPI) project, which has received funding from the European Union's Hori-
zon 2020 research and innovation program under Grant Agreement �101036168
(EPI-SGA2).

14 Antoni Portero, Carlos Falquez, Nam Ho, et al.

References

1. M. Sato, et al.�Co-design and system for the supercomputer "fugaku",� IEEE Mi-
cro, vol. 42, no. 2, pp. 26�34, 2022.

2. D. Monroe, �Fugaku takes the lead,� Commun. ACM, vol. 64, no. 1, pp. 16�18,
2021.

3. S. Yamamura, et al. , �A64FX: 52-core processor designed for the 442peta�ops
supercomputer fugaku,� in ISSCC, San Francisco, CA, USA, February 20-26, 2022,
pp. 352�354, IEEE, 2022.

4. M. Sato, �The supercomputer "fugaku" and ARM-sve enabled A64FX processor for
energy-e�ciency and sustained application performance,� in ISPDC 2020, pp. 1�5.

5. N. Stephens, et al. , �The ARM scalable vector extension,� CoRR,
vol. abs/1803.06185, 2018.

6. J. Lee, et al. , �Extending openmp SIMD support for target speci�c code and appli-
cation to ARM SVE,� in Scaling OpenMP for Exascale Performance and Portability
- 13th IWOMP 2017

7. D. Reed, et al., �Reinventing high performance computing: Challenges and oppor-
tunities,� 2022.

8. A. Petitet, et al., �Hpl - a portable implementation of the high-performance linpack
benchmark for distributed-memory computers,� December 2018.

9. Di Wu, J. Li, R. Yin, H. Hsiao, Y. Kim, and J. S. Miguel, �Ugemm: Unary com-
puting architecture for gemm applications,� in ISCA, pp. 377�390, 2020.

10. L. Zaourar et al., "Multilevel simulation-based co-design of next generation HPC
microprocessors," (PMBS), St. Louis, MO, USA, 2021, pp. 18-29

11. P. Lavin, E. J. Riedy, R. Vuduc, and J. S. Young, �Spatter: A benchmark suite for
evaluating sparse access patterns,� CoRR, vol. abs/1811.03743, 2018.

12. Sato, M., et al., Co-Design for A64FX Manycore Processor and �Fugaku�. SC20:
International Conference For High Performance Computing, Networking, Storage
And Analysis. pp. 1-15 (2020)

13. R. Mathá, D. Kimovski, A. Zabrovskiy, C. Timmerer, and R. Prodan, �Where to
encode: A performance analysis of x86 and ARM-based amazon ec2 instances,� in
eScience, pp. 118�127, 2021.

14. ARM, �ARM® Neoverse� V1- amazon's graviton3 server
chip.� https://www.nextplatform.com/2022/05/24/
the-value-proposition-for-amazons-graviton3-server-chip/.

15. ECP, �Milestone M1 Report: HBM2/3 Evaluation on Many-core CPU WBS 2.4,
Milestone ECP-MT-1000,� Exascale Computing Project, June 2018.

16. A. Biswas, "Sapphire Rapids," 2021 IEEE Hot Chips 33 Symposium (HCS), Palo
Alto, CA, USA, 2021, pp. 1-22, doi: 10.1109/HCS52781.2021.9566865.

17. ARM, �Learn the architecture - Introducing AMBA CHI,� Non-Con�dential. Issue
01, 102407_0100_01_e

18. �High bandwidth memory (hbm) dram.�, JEDEC, 2020

19. B. Brank, S. Nassyr, F. Pouyan, and D. Pleiter, �Porting applications to ARM-
based processors,� in 2020 IEEE International Conference on Cluster Computing
(CLUSTER), pp. 559�566, 2020.

20. McCalpin, J. Memory Bandwidth and Machine Balance in Current High Perfor-
mance Computers. (TCCA) Newsletter. pp. 19-25 (1995,12)

21. S. A. McKee, �Re�ections on the memory wall,� in Proceedings of the First Con-
ference on Computing Frontiers, 2004, Ischia, Italy, April 14-16, 2004

https://www.nextplatform.com/2022/05/24/the-value-proposition-for-amazons-graviton3-server-chip/
https://www.nextplatform.com/2022/05/24/the-value-proposition-for-amazons-graviton3-server-chip/

COMPESCE: A Co-design Approach for memory Perf. Analysis in HPC 15

22. Germann, T. Co-design in the Exascale Computing Project. The International
Journal Of High Performance Computing Applications. 35, 503-507 (2021)

23. Qureshi, Y., et al. Gem5-X: A Many-Core Heterogeneous Simulation Platform for
Architectural Exploration and Optimization. ACM Trans. Archit. Code Optim..
18 (2021,7)

24. Okazaki, et al.,. Supercomputer Fugaku CPU A64FX Realizing High Performance,
High-Density Packaging, and Low Power Consumption. Fujitsu Technical Re-
viewNo.32020. (2020,11,11)

25. M. Hondou, �A64fx microarchitecture manual v1.8 released.� https://github.
com/fujitsu/A64FX, 2019.

26. Y. Nakamura,et al., �Fugaku codesign report,� tech. rep., FLAGSHIP 2020 Project,
RIKEN Center for Computational Science (R-CCS), RIKEN, 03/2022.

27. A. J. Smith, �Sequential program prefetching in memory hierarchies,� Computer,
vol. 11, p. 7�21, dec 1978.

28. A. Kritikakou, F. Catthoor, and C. Goutis, Scalable and Near-Optimal Design
Space Exploration for Embedded Systems. Springer, 2014.

29. ARM, �AMBA® 5 CHI architecture speci�cation.� https://developer.arm.
com/documentation/ihi0050/ea/, 2020.

30. Jedec, �High bandwidth memory (hbm) dram,� Standards JESD235D, Joint Elec-
tron Device Engineering Council, Mar 2021.

31. ARM. Developer, �ARM® neoverse� v1 core, rev:r1p1. technical reference man-
ual,� tech. rep., ARM- Advanced RISC Machines, 2021.

32. `/`Inside amazon's graviton3 ARM server proces-
sor.� https://www.nextplatform.com/2022/01/04/
inside-amazons-graviton3-arm-server-processorAccessed:2022-10-17.

33. ARM, �ARM® Neoverse� N1 core - technical reference manual.� https://
developer.arm.com/documentation/100616/0401/?lang=en, 2020.

34. Binkert, N., et al., The gem5 simulator. ACM SIGARCH Computer Architecture
News. 39, 1-7 (2011)

35. Ventroux, N., et al. SESAM: An MPSoC simulation environment for dynamic
application processing. 2010 10th IEEE CIT. pp. 1880-1886 (2010)

36. Gómez, C., et al. Design Space Exploration of Next-Generation HPC Machines.
IPDPS, 2019. pp. 54-65 (2019)

37. Hardavellas, N., et al. SimFlex: A Fast, Accurate, Flexible Full-System Simulation
Framework for Performance Evaluation of Server Architecture. SIGMETRICS Per-
form. Eval. Rev.. 31, 31-34 (2004,3)

38. Magnusson, et al. Simics: A full system simulation platform. Computer. 35, 50-58
(2002)

39. Carlson, et al. Sniper: Exploring the level of abstraction for scalable and accurate
parallel multi-core simulation. SC '11. pp. 1-12 (2011)

40. �Microarchitecture description ARM v1.�,ARM report, 2022
41. ARM, ARM® Neoverse� CMN-700 Coherent Mesh Network, Technical Reference

Manual, 102308_0300_05_en, 2022

https://github.com/fujitsu/A64FX
https://github.com/fujitsu/A64FX
https://developer.arm.com/documentation/ihi0050/ea/
https://developer.arm.com/documentation/ihi0050/ea/
https://www.nextplatform.com/2022/01/04/inside-amazons-graviton3-arm-server-processor
https://www.nextplatform.com/2022/01/04/inside-amazons-graviton3-arm-server-processor
https://developer.arm.com/documentation/100616/0401/?lang=en
https://developer.arm.com/documentation/100616/0401/?lang=en

	COMPESCE: A Co-design Approach for memory subsystem Performance Analysis in HPC many-cores

