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Abstract: The current study is aimed at investigating the level of polycyclic aromatic hydrocarbons
(PAHs) and bis(2-ethylhexyl) phthalate (BEHP), which pose a potential risk to human health, in soil
samples collected from a teff-Acacia decurrerns-charcoal production system (TACP system) in northern
Ethiopia. Soil samples were collected from the TACP system and from an adjacent teff monocropping
system (TM system) from 0 to 20 cm soil depth. Individual PAHs and total concentrations of PAHs
and BEHP generally exhibited no significant variation between the TM and the TACP systems
over three rotations. In the land-use systems, the mean concentration of PAHs decreased in the
order phenanthrene > fluorene > pyrene > chrysene. Fluorene (22.84-24.69 ng g_l dry soil), pyrene
(21.99 ng g~ 1), and chrysene (21.79 ng g ') were detected in the TACP system only, suggesting that
they were from charcoal production. The maximum concentration of BEHP recorded in the soil
samples was 104.00 pg g~ !, which could be attributed to the polyethylene (PE) bags used for planting
the Acacia decurrens seedlings of the TACP system. In soil samples, the sum of all PAHs analyzed
ranged from not detected (ND) to 170.69 ng g1, which is below the limits of prevention established
by European regulations for soils (3000 ng g 1) and previous studies. Carcinogenic equivalent (BaP-
TEQ) and mutagenic equivalent (BaP-MEQ) concentrations calculated for the individual PAHs in the
land-use systems ranged from ND to 0.374 ng g~! and from ND to 0.218 ng g~!, respectively, which
is far below many international safety standards. Our results indicate that the charcoal production
and the use of the charcoal residues as soil amendment in the TACP system is safe concerning soil
contamination by PAHs and BEHP and the risk of cancer and mutation.

Keywords: soil contamination; biochar; carcinogenic and mutagenic equivalents; toxic assessment

1. Introduction

The teff-Acacia decurrens-charcoal production system (referred to hereafter as TACP
system) is a unique and rapidly expanding agroforestry system in the Fagita Lekoma
district of the northwestern highlands of Ethiopia. In the TACP system, teff (Eragrostis tef)
and A. decurrens trees are intercropped on the same piece of land, where teff is grown in
the first year between freshly planted A. decurrens saplings, and charcoal is produced for
commercial purposes from the wood of A decurrens trees after four to five years. Then,
the whole cycle is started again on the cleared land, leaving the charcoal residues in the
soil below the charcoal production spots. The application of charcoal residues (biochar)
to the soil of the TACP system is a strategy to combat land degradation in the district.
The application of biochar, a carbon-rich material produced by pyrolysis under low- or
no-oxygen conditions during charcoal production, has been used in agriculture to sequester
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carbon [1,2], reduce greenhouse gas emissions [3,4], improve soil fertility [5,6], enhance
crop growth and yield [7,8], and enhance soil adsorption of contaminants [9,10]. However,
residual pollutants including polycyclic aromatic hydrocarbons (PAHs) could be generated
during biochar production [11-14].

Polycyclic aromatic hydrocarbons (PAHs) are a group of dangerous organic substances
containing two or more fused benzene rings, which are found everywhere in the environ-
ment [15]. They are byproducts of pyrolytic or incomplete combustion reactions produced
when materials containing carbon and hydrogen are heated at temperatures higher than
100-150 °C [16]. These compounds are of particular concern as they are suspected or known
carcinogens and mutagens [17,18]. PAHs may enter the environment during the production
of charcoal by pyrolysis [19]. They could strongly be adsorbed on soil particles due to their
hydrophobicity and low water solubility [20]. Arable top soils typically contain around
200 ng g~ ! for the sum of the 16 PAHs listed by the U.S. Environmental Protection Agency
(US EPA) [21]. Soils contaminated with PAHs can pose a health risk to humans and livestock,
as well as an ecotoxicological risk to the soil biome, soil functions, and plants [22]. There are
three different PAH exposure pathways for humans: inhalation, ingestion of contaminated
food and/or water, and skin contact [23,24]. Therefore, workers involved in the production,
transport, and application of biochar may be exposed to a risk when they are in contact with
biochar itself or with biochar-amended soils [25,26]. These facts, therefore, justify the need for
PAH monitoring in environmental compartments, such as soils [27-29], especially in surface
soil due to its role as a large PAH sink in the terrestrial system (>90%) [30].

Several approaches have been developed to obtain a more accurate assessment of
potential risk of exposure to a complex mixture of PAHs. In most risk assessments, the
benzo(a)pyrene (BaP) toxic equivalent factor is applied to convert other PAH concentrations
to BaP-equivalent concentrations for assessing the toxic risks of PAHs, like the BaP toxic
equivalent factor (TEF) of [18] and the mutagenic equivalent factor (MEF) of [17], which are
used to evaluate the PAHs’ carcinogenicity and mutagenicity, respectively. Policymakers
and legislators of various countries are working on appropriate thresholds to limit the
presence of pollutants in biochar in relation to their use. In this regard, previous studies
focused on the analysis of PAHs solely in biochar [13,26]. PAH contents determined in
biochar can range widely from 0.1 to even 10,000 mg/kg [12,31]. The maximum limits for
the sum of 16 USEPA-PAHs have been defined as 12 mg kg~! of dry mass for the basic
grade, according to the European Biochar Certificate [32], and as 6 mg kg~! dry mass
according to the International Biochar Initiative certificate guidelines [33]. Both certification
initiatives pay particular attention to the formation and accumulation of polycyclic aromatic
hydrocarbons (PAHs) during pyrolysis [32].

Despite these defined limits of PAH content in certified biochar, very few studies
have evaluated the PAH content of biochar-amended soils [26,34-36]. Furthermore, to
our knowledge, no studies so far have addressed the effect of the TACP system on the
concentration or level of PAHs and its potential risk to human health. There is also
very little information on the effect of soil-applied charcoal residues on the adsorption
of bis(2-ethylhexyl) phthalate (BEHP), which is suspected to be present abundantly in
the soil of the study area due to the wide use of A. decurrens seedling plastic bags for the
TACP system. The presence of plastic soil is a serious problem. BEHP is a phthalate ester
that is widely used as an additive (as softener or plasticizer) to plastics (e.g., polyvinyl
chloride). It has been listed as a priority pollutant by many countries around the world
mainly because it disrupts endocrine function in humans and can lead to hepatocellular
carcinoma, anovulation, and fetal growth retardation [37]. In order to avoid the risk of
BEHP accumulation in humans, it is important to reduce BEHP pollution in soils and crops
to minimize the contamination through the food chain and hence to determine the level
of BEHP in soil of the TACP system. This report complements previous studies [38,39], in
which the same soil samples were analyzed (from 0 to 20 cm depth). The report investigates
(1) the effect of the application of the charcoal production residues on the concentration of
PAHs in the soil of the TACP system (first, second, and third rotations) as compared with
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the adjacent TM system; (2) the environmental safety concerning soil contamination and
potential human health risk in the study area; and (3) the effect of the application of the
charcoal residues on the concentration of BEHP in the soil.

2. Materials and Methods
2.1. The Study Area

The study site is located in the Fagita Lekoma district, Awi zone, Amhara Region of
northwestern Ethiopia (10°57'23” N to 11°11'21” N, 36°40'01” E to 37°05'21" E; 1800-2900 m
above mean sea level) (Figure 1). The long-term (2000 to 2017) mean annual rainfall of the
area is 1328 mm [40] with an average annual temperature of 17.5 °C [41] (Figure 2). The
area is part of the moist subtropical agroecological zone of the northwestern highlands of
Ethiopia. The predominant soil types are Nitisol and Acrisol, and they are of moderately
acidic pH [42,43]. Major physicochemical properties of soils of the study area are presented
in Table 1. The area is characterized by flat lands and moderately steep rolling topogra-
phy [40]. The major land-use categories of the district are agriculture (60.8%) and forest
(19.5%), while the remaining area is grazing land and settlement [44].

Table 1. Physicochemical properties of soil samples from the TM and TACP systems for depth
0-20 cm: textural fractions (%), pH, soil organic carbon (SOC) (%), bulk density (Bd) (g cm~3), and
total nitrogen (TN) (%).

Land-Use Types

Soil

P . TACP System
roperties
TM System Rotation 1 Rotation 2 Rotation 3
Sand 29.67 29.21 29.25 26.75
Silt 29.42 29.20 29.25 30.30
Clay 40.92 41.78 41.20 42.87
pH 5.06 4.48 4.65 5.02
SOC 2.34 4.19 4.10 1.87
Bd 0.76 0.90 0.87 0.81
TN 0.20 0.35 0.32 0.19
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Figure 1. Map of the study area.
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Figure 2. Maximum, minimum, and average temperatures and mean monthly rainfall of Fagita
Lekoma district, from 2007 to 2017 (The data used in this figure were extracted with permission
from [45].

2.2. The TM and TACP Systems

Parts of the TM and the TACP system are depicted in Figure 3. TM system is conven-
tional teff cropping system wildly practiced in the study area (Figure 3a). In TM system, teff
fields are tilled by oxen at least four times up to 20 cm depth from April to end of May to
smooth the land. Teff is a staple crop in Ethiopia, where it is used mainly to make injera—a
spongy flatbread that is eaten with most meals. The main fertilizers used in the TM system
are urea and diammonium phosphate (DAP) and potassium fertilizers by some farmers.
The urea and the DAP are applied mostly at the same rate of about 50 kg ha~!, and the
application rate of both varies between 40 and 60 kg ha~! depending on the socioeconomic
status of the farmer [46,47]. In addition to the urea and the DAP, about 10 Mg/ha of cattle
manure is also spread before the fourth tilling, which starts 7 days after the third. During
the fourth tilling, any weeds are removed from the field and the seedbed is prepared. Teff
is harvested manually in October and threshed in December. The teff residues are used
as animal feed or for local mud house construction. Livestock is allowed to enter the TM
system for grazing after teff is harvested.

TACP system (Figure 3b) is rotational practice of teff A. decurrens intercropping and
charcoal production. In TACP system, A. decurrens seedlings are planted in the teff fields at
about 25-50 cm spacing. The teff is grown in the first year and harvested after 3 to 5 months,
whereas A. decurrens is grown for about 4 to 5 years. After the harvesting of teff at the end
of the second year, local farmers let grasses grow beside A. decurrens. They use the grass
for sale or to feed their own livestock. In the third and fourth years, the trees continuously
grow without teff and grass cultivation. And after about four to five years, charcoal is
produced on the same pieces of land for commercial purposes from wood of A. decurrens
trees like in the traditional mound kilns in Figure 3b. Then, the whole cycle is started again
on the cleared land, spreading the charcoal residues in the soil of the TACP system (in
and outside of charcoal production spot) for its potential of improving soil fertility. In the
TACP system, A. decurrens seedings are prepared using polyethylene bags, which were
hypothesized in this study to cause bis(2-ethylhexyl) phthalate (BEHP) contamination in
the TACP and its vicinity including the TM system.
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Figure 3. TM system (a) and a charcoal production in the TACP system (b) (Photos© Miftha
Beshir, 2018).

2.3. Soil Sampling

The soil samples were collected from the TM and the TACP systems (Figure 4a,b) with
four replicates from 0 to 20 cm depth after teff harvest. In the TACP system, soil samples
were collected from inside and outside of six randomly selected charcoal production spots
(Figure 4a) and then mixed and homogenized to a single composite soil sample for each
field replication. Together, the sampling design covered three different areas (in TM system
and inside and outside of the charcoal production system of TACP system in the first
and second and third rotations) as treatments (Figure 4a,b), resulting in a total number of
28 composite soil samples (7 treatments x 4 replications x 1 depth). Soil samples were
taken only from same horizontal planes of fields, plots, and rotations and with similar
number of charcoal production spots to keep the similarity among treatments.

2.4. Analysis of Soil Properties

Soil samples for chemical analysis were passed through a 2 mm soil sieve. Soil texture
was determined using the hydrometric method after removing SOM using hydrogen per-
oxide and thereafter dispersing the soil with sodium hexametaphosphate [48]. The USDA
particle size classes for sand (2.0-0.05 mm), silt (0.05-0.002 mm), and clay (<0.002 mm)
were used for assigning the textural classes. Bulk density was determined by using the core
method [48]. Soil pH was measured with electrodes in a 1:2.5 soil / water suspension. Soil
organic carbon (SOC) was determined by using the Walkley—Black oxidation method [49].
Total nitrogen (TN) was measured with the Kjeldahl digestion method [50].

2.5. Analysis of Polycyclic Aromatic Hydrocarbons and Phthalates

Chemicals: PAH standard mix (certified reference material EPA 525 PAH Mix B
(13 PAHs), 500 mg/L of each component in acetone, VWR, Darmstadt, Germany), dibutylph-
thalate, diisooctylphthalate, diisodecylphthalate, and bis(2-ethylhexyl)phthalate (BEHP)
were purchased from VWR (Darmstadt, Germany). Methanol and acetone (both LC-MS
grade) were also supplied by VWR (Darmstadt, Germany).
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Figure 4. Soil samples were taken from TM system (a) and inside and outside of the charcoal
production spot of the TACP system (b).

Accelerated solvent extraction (ASE): PAH/phthalate extraction was carried out using
an ASE instrument 350 (Thermo Fisher, Waltham, MA, USA). Approximately 7 g dry
soil sample was mixed with the same volume of diatomaceous earth (Merck, Darmstadt,
Germany) and filled in a 22 mL stainless steel cell. The bottom and top of the cell were
covered by glass fiber filters (Thermo Fisher, Waltham, MA, USA). The ASE program was
set as follows: the extraction solvent was methylene chloride/acetone (1:1 v/v); extraction
temperature was set at 100 °C; static extraction time was 5 min; and the number of static
cycles was 1. The purge volume was set at 60% and the purge time at 60 s. The obtained
extracts (approximately 40 mL) were evaporated to dryness in a stream of nitrogen. The
residues were reconstituted in 1 mL acetone. While samples were directly analyzed for
PAHs, samples for the determination of phthalates were diluted by a factor of 15. For
determination of the phthalate blank value of the plastic bottles used for soil sampling, 1 g
plastic was cut into small pieces and extracted by the same ASE procedure.

Quantification of PAHs and phthalates by gas chromatography—mass spectrometry
(GC-MS) analysis: The GC-MS system consisted of an Agilent 7890B gas chromatograph
and equipped with 7693 autosampler (Santa Clara, CA, USA) as well as a Jeol JMS-T200GC
AccuTOF GCx mass spectrometer (Tokyo, Japan). PAHs were separated on an Optima
1701 MS column (30 m x 0.25 mm i.d., 0.25 um film thickness) (Macherey-Nagel, Diiren,
Germany) and phthalates on a ZB-5 HT Inferno column (30 m x 0.25 mm i.d., 0.25 um film
thickness) (Phenomenex, Torrance, CA, USA). Helium was used as carrier gas at a constant
gas flow of 1.0 mL/min. The oven temperature program employed for the analysis of
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PAHSs was as follows: 100 °C, with 8 °C/min to 300 °C, which was held for 15 min (total
runtime: 40 min). Phthalates were analyzed by use of the following temperature program:
50 °C, with 4 °C/min to 340 °C, which was held for 1 min (total runtime: 73.5 min). The
injector temperature was held at 250 °C (PAHs) and 290 °C (phthalates), respectively, and
all injections (1 pL) were made in split mode (1:10). The mass spectrometer was used in the
electron ionization (EI, 70 eV) mode and scanned over the range m/z 40-750 with a sampling
interval of 0.25 ns and a recording interval of 0.4 s. The GC interface and ion chamber
were kept at 290 °C and 250 °C, respectively. Data processing was performed by use of the
software MSAxel (Jeol) version 5.3 and XCalibur 2.0.7 (ThermoFisher Scientific, Waltham,
MA, USA). Quantification was performed by the method of external calibration with
standard solutions in the concentration range 0.05-2.0 mg/L for PAHs and 5.0-50 mg/L
for phthalates.

2.6. Calculation of BaP-Equivalent Concentrations

BaP-TEQ (carcinogenic equivalents, ng g~!) and BaP-MEQ (mutagenic equivalents,
ng g~ ') were calculated by multiplying the concentrations of each PAH compound with
its toxic equivalency factors (TEFs) for cancer potency relative to BaP [18] and mutagenic
potency factor (MEF) relative to BaP [17], respectively. BaP-TEQ and BaP-MEQ for each
land-use type were described by Equations (1) and (2), respectively.

(BaP-TEQ) PAH = ) C,, TEF, 1)

(BaP-MEQ) PAH = Y C, MEF, @)

where C,, = concentration of individual PAH compound (n) and TEF, = toxic equivalent
factor for individual PAH compound (n). MEF, = mutagenic equivalent factor for individ-
ual PAH compound. In the present study, the TEFF, of the seven carcinogenic PAHs: BaA,
Chr, BbF, BKF, BaP, IcdP, and DahA were 0.1, 0.01, 0.1, 0.1, 1, 0.1, and 1 and the MEF,, of
value for BaA, Chr, BbF, BKF, BaP, IcdP, and DBhA were 0.082, 0.017, 0.25, 0.11, 1, 0.31, and
0.29, respectively [17].

2.7. Statatistical Analysis

The data were then grouped according to the land-use types (the TM and the TACP
systems in three rounds). Statistical differences were tested using an analysis of variance
(ANOVA) following the general linear model (GLM) procedure of SPSS Version 20.0 for Win-
dows [50]. Tukey’s honest significance difference (HSD) test was used for mean separation
when the analysis of variance showed statistically significant differences (p < 0.05).

3. Results
3.1. Level of PAHs

The individual and total concentrations of PAHs found in the TM system and the TACP
system are shown in Table 2. Only compounds with a value above detection (quantification
limit) were considered for calculating the sums. No statistical difference in the concentration
of phenanthrene was detected between the TM and the TACP systems and among the
three rotations (Table 2). The maximum concentration of phenanthrene detected in all soil
samples was 136.41 ng g~ 1.

Among the 13 PAHs in the 28 samples analyzed, only 4 PAHs were detectable (Table 2).
Fluorene, pyrene, and chrysene were detected in the TACP system only. Phenanthrene was ob-
served in 100% of the soil samples. The detection rate of chrysene (10.71%) was relatively low.
Fluorene was detected in 28.57% of the samples, while pyrene was detected in 17.86% of the
samples. Acenaphthylene, anthracene, benzo(a)anthracene, benzo(k)fluoranthene, benzo(b)
fluoranthene, benzo(a)pyrene, indeno(1,2,3c,d)pyren, benzo(g hi) perylene, and dibenzo(ah)
anthracene were not detected in any of the samples studied (Table 2). In the land-use systems,
the mean concentration of PAHs decreased in the order penanthrene > fluorene > pyrene >
chrysene (Table 2).



Land 2023, 12,2117

8 of 14

Table 2. Mean concentration of PAHs in the land-use types, TM and TACP systems (ng g~ ')
(fluorene (Flu), acenaphthylene (Ace), phenanthrene (Phe), anthracene (Ant), pyrene (Pyr),
benzo(a)anthracene (BaA), chrysene (Chr), benzo(k)fluoranthene (BkF), benzo(b)fluoranthene
(BbF), benzo(a)pyrene (BaP), indeno(1,2,3-c,d)pyren (IcdP), benzo(ghi)perylene (BghiP), and
dibenzo(ah)anthracene (DBahA)).

Land-Use Types

[I{);:,Sl] TACP System
TM System Rotation 1 Rotation 2 Rotation 3

Flu ND 22.84 24.69 ND
Ace ND ND ND ND
Phe 42.42 66.34 61.42 58.10
Ant ND ND ND ND
Pyr ND ND ND 21.99
BaA ND ND ND ND
Chr ND ND ND 21.79
BKF ND ND ND ND
BbF ND ND ND ND
BaP ND ND ND ND
IedP ND ND ND ND
BghiP ND ND ND ND

DBahA ND ND ND ND
Total 42.42 89.18 86.11 101.88

In the present study, there was no significant variation in the total concentration of
PAHSs () _"PAH) between the TM and TACP systems and among the three rounds (Table 2).
Fluorene, pyrene, and chrysene were not detected in all the samples and treatments.
Fluorene (24.69 ng g~ 1), pyrene (21.99 ng g~ 1), and chrysene (21.79 ng g~ ') were detected
in the TACP system only (Table 2). The Y PAH were 42.42, 89.18, 86.11, and 101.88 ng g !
for the soil of the TM system and rotations 1, 2, and 3 of the TACP system, respectively
(Table 2). The overall mean ) PAH for the two land uses was 79.89 ng g’l. And the (Y PAH)
varied between 37.98 ng g ! and 49.54 ng g~ ! in the TM system and between 12.68 ng g~!
and 170.69 ng g~ ! in the TACP system. No statistical difference in the concentration
of phenanthrene was detected between the TM and the TACP systems and among the
three rotations (Table 2). The maximum concentration of phenanthrene detected in all soil
samples was 136.41 ng g~ 1.

3.2. Toxic Assessment

The BaP-equivalent (BaP-TEQ and BaP-MEQ) concentrations were calculated for the
individual carcinogenic PAH measured. The BaP-TEQ for all soil samples ranged from 0 to
0.374 ng g_1 dry soil, while the BaP-MEQ ranged from 0 to 0.218 ng g_1 for all soil samples.
In our study, of all the PAHs, exclusively chrysene contributed to BaP-TEQ and BaP-MEQ
in a few soil samples of rotation 3 of the TACP system.

3.3. Bis(2-ethylhexyl) Phthalate (BEHP)

No statistical difference in the concentration of BEHP was delectated between the TM
and the TACP systems and among the three rounds (Figure 5). The maximum concentration
of BEHP detected in the soil samples was 104.00 ug g~ .
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Figure 5. Mean BEHP concentrations in the soil of the TM system and the different rounds of the
TACP system. Means marked with the same letters do not differ statistically by using Tukey’s
test (p = 0.05). Vertical bars denote the standard deviation.

4. Discussions
4.1. Level of PAHs

In this study, the concentration of PAHs showed no significant variation between the
TM and the TACP systems in the three rotations.

The relatively large, though not statistically significant, increase in phenanthrene in
the TACP round system as compared with the TM system (Figure 3) was probably related
to the charcoal production from which charcoal residues were added to the soil as biochar.
Phenanthrene was reported to be the second most abundant PAH in biochar [11,12,26,31]
after naphthalene [51].

In the present study, the absence of fluorene, pyrene, and chrysene in all samples
and treatments suggests that they were introduced with the charcoal debris into the soil.
Previous studies revealed that PAHs are strongly sorbed by biochar and biochar-amended
soil [52-54]. Hale et al. [11] reported that biochar derived from different types of wood
could adsorb 70-3270 ng g~ of PAHs. The dominant PAHs pyrene and chrysene in the
TACP system could be due to the fact that higher-molecular-weight PAHs are more strongly
adsorbed to carbonaceous sorbents than lower-molecular-weight PAHs [55], corresponding
to the relatively higher content of soil organic carbon (4.19%) in the TACP system [39].

The obtained values of total concentrations of PAHs in two land-use systems
(42.42 to 86.11 ng g~!) in this study were lower than those commonly reported in the
literature [26,36,51,56]. The relatively, but not significantly, higher total concentration of
Y PAH in the TACP system in the present study was probably due to charcoal debris left
in the soil of the TACP system. Previous studies (e.g., [35,57,58]) revealed that PAHs are
strongly sorbed by biochar and biochar-amended soil.

In this study, none of the PAH concentrations approached the maximum permitted
levels established, indicating that soils in the TACP system contained PAHs below the
limits of prevention established by European regulations for soils (3000 ng g~ ') and also
lower than the findings of previous studies about biochar-amended soils [26,36,51,56].

In another classification system suggested by [59], Y PAH values in agricultural
soils <200 ng g1, 200600 ng g~ !, 600-1000 ng g~ !, and >1000 ng g~ ! were defined as
“non-contaminated”, “weakly contaminated”, “contaminated”, and “heavily contami-
nated”, respectively. According to this classification, both the TM and the TACP systems
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could be classified as “non-contaminated”. The relatively low PAH concentrations could
be attributed to the dominance of the three-ring compounds phenanthrene and fluorine,
and the four-ring compounds pyrene and chrysene, which are low-molecular-weight com-
pounds [60]. In addition, these compounds are among the PAHs most susceptible to
leaching and degradation within the groups of PAHs, and they are also among the most
volatile compounds, which makes them less abundant [60,61].

4.2. Toxic Assessment

In the present study, the BaP-TEQ and BaP-MEQ concentrations were far below the
values reported in different countries for soils modified through human activities. For
instance, 9.0 ng g~ ! and 10.6 ng g~ ! in Norway [62]; 26.9 ng g~ ! and 22.1 ng g~ ! in
Korea [63]; 217.6 ng g~ ! and 150.8 ng g~ ! in India [64]; 17.9 ng g~ ! and 20.0 ng g~ ! in
Italy [65]; 20.1 ng g~ ! in China [66]; and 64.1 ng g~ ! in Spain [66] for a soils treated with
biochar. By comparison, the BaP-TEQ and BaP-MEQ concentrations in this study were at a
relatively low level in a global context. The BaP-TEQ concentration of this study is far less
than the safe level of 260 ng g~ ! in soil [67] based on the Netherlands National Institute
of Public Health. And the BaP-MEQ concentration is also far less than the safe level of
600 ng g~ ! based on the risk-based soil criterion for the protection of human health of the
Canadian Council of Ministers of Environment [68]. The BaP-TEQ and BaP-MEQ were also
less than the screening or threshold value (550 ng g~ 1) so that the contamination risk posed
by pollutants to the soil environment can be ignored according to the soil environmental
quality risk control standard for soil contamination of agricultural land [69].

4.3. Bis(2-ethylhexyl) Phthalate (BEHP)

In the present study, the concentration of BEHP exhibited no significant variation
between the TM and the TACP systems in the three rotations.

The lower but not statistically significant concentration of BEHP in the TACP system
than in the TM system was very likely because the charcoal debris in the TACP system
strongly adsorbed BEHP. The relatively higher SOC in the first and second rounds of
the TACP system could also play a role (Table 1) because easily available organic carbon
provides energy for microbes and promotes microbial activity, which has been found to
be positively and significantly correlated with the degradation rates of BEHP [70]. Similar
types of degradation have been reported in other studies (e.g., [71,72]). The relatively but
not significantly higher mean concentration of BEHP (Table 2) in the TM system could be
attributed to the polyethylene (PE) bags used for planting the A. decurrens seedlings of
the TACP system in the study area. BEHP is a widely used plasticizer for many kinds of
polymers, such as PE and PVC [72], and it is a serious environmental problem in areas
where agricultural plastic films are used intensively [73,74].

5. Conclusions

The charcoal production in the TACP system did not affect the concentration of PAHs
and BEHP. The concentrations exhibited no significant variation between the TM and the
TACP systems in the three rotations.The concentration of PAHs in the two land-use systems
is generally below the maximum level established by international guidelines and previous
studies. The PAHs in the two land-use systems originated mainly from the charcoal
production in the TACP system, whereas the BEHP originated from the polyethylene
(PE) bags of the Acacia decurrens seedlings. In the two land-use systems, the BaP-TEQ
ranged from ND to 0.374 ng g ! and the BaP-MEQ from ND to 0.218 ng g~ !. They are less
than the screening or threshold value (550 ng g~ '), according to the soil environmental
quality risk control standard for soil contamination of agricultural land, meaning that the
contamination risk posed by pollutants to the soil environment can be ignored. Therefore,
the charcoal production and the use of the charcoal residues for soil amendment in the
TACP system is safe concerning soil contamination by PAHs and BEHP and risk of cancer
and mutation. However, the production of chrysene (which contributed 100% of the BaP-
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equivalent concentration) and BEHP due to the plastic seedling bags in the TACP should
draw specific attention in future studies. Moreover, without a doubt, the effect of the TACP
system on PAH and BEHP concetrations in the study area requires further research. Also,
without any doubt, the charcoal debries in the TACP system should be thouroughly studied
prior to application for soil amendment.
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