001019467 001__ 1019467
001019467 005__ 20231216201905.0
001019467 0247_ $$2arXiv$$aarXiv:2307.06785
001019467 0247_ $$2datacite_doi$$a10.34734/FZJ-2023-05414
001019467 037__ $$aFZJ-2023-05414
001019467 088__ $$2arXiv$$aarXiv:2307.06785
001019467 1001_ $$0P:(DE-Juel1)165594$$aGäntgen, Christoph$$b0$$eCorresponding author$$ufzj
001019467 245__ $$aFermionic Sign Problem Minimization by Constant Path Integral Contour Shifts
001019467 260__ $$c2023
001019467 3367_ $$0PUB:(DE-HGF)25$$2PUB:(DE-HGF)$$aPreprint$$bpreprint$$mpreprint$$s1702709779_8466
001019467 3367_ $$2ORCID$$aWORKING_PAPER
001019467 3367_ $$028$$2EndNote$$aElectronic Article
001019467 3367_ $$2DRIVER$$apreprint
001019467 3367_ $$2BibTeX$$aARTICLE
001019467 3367_ $$2DataCite$$aOutput Types/Working Paper
001019467 520__ $$aThe path integral formulation of quantum mechanical problems including fermions is often affected by a severe numerical sign problem. We show how such a sign problem can be alleviated by a judiciously chosen constant imaginary offset to the path integral. Such integration contour deformations introduce no additional computational cost to the Hybrid Monte Carlo algorithm, while its effective sample size is greatly increased. This makes otherwise unviable simulations efficient for a wide range of parameters. Applying our method to the Hubbard model, we find that the sign problem is significantly reduced. Furthermore, we prove that it vanishes completely for large chemical potentials, a regime where the sign problem is expected to be particularly severe without imaginary offsets. In addition to a numerical analysis of such optimized contour shifts, we analytically compute the shifts corresponding to the leading and next-to-leading order corrections to the action. We find that such simple approximations, free of significant computational cost, suffice in many cases.
001019467 536__ $$0G:(DE-HGF)POF4-5111$$a5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511)$$cPOF4-511$$fPOF IV$$x0
001019467 536__ $$0G:(GEPRIS)196253076$$aDFG project 196253076 - TRR 110: Symmetrien und Strukturbildung in der Quantenchromodynamik (196253076)$$c196253076$$x1
001019467 588__ $$aDataset connected to arXivarXiv
001019467 65027 $$0V:(DE-MLZ)SciArea-120$$2V:(DE-HGF)$$aCondensed Matter Physics$$x0
001019467 65027 $$0V:(DE-MLZ)SciArea-200$$2V:(DE-HGF)$$aNuclear Physics$$x1
001019467 7001_ $$0P:(DE-Juel1)188583$$aBerkowitz, Evan$$b1$$ufzj
001019467 7001_ $$0P:(DE-Juel1)159481$$aLuu, Tom$$b2$$ufzj
001019467 7001_ $$0P:(DE-HGF)0$$aOstmeyer, Johann$$b3
001019467 7001_ $$0P:(DE-Juel1)185942$$aRodekamp, Marcel$$b4$$ufzj
001019467 8564_ $$uhttps://arxiv.org/abs/2307.06785
001019467 8564_ $$uhttps://juser.fz-juelich.de/record/1019467/files/2307.06785.pdf$$yOpenAccess
001019467 8564_ $$uhttps://juser.fz-juelich.de/record/1019467/files/2307.06785.gif?subformat=icon$$xicon$$yOpenAccess
001019467 8564_ $$uhttps://juser.fz-juelich.de/record/1019467/files/2307.06785.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
001019467 8564_ $$uhttps://juser.fz-juelich.de/record/1019467/files/2307.06785.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
001019467 8564_ $$uhttps://juser.fz-juelich.de/record/1019467/files/2307.06785.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
001019467 909CO $$ooai:juser.fz-juelich.de:1019467$$popenaire$$popen_access$$pVDB$$pdriver$$pdnbdelivery
001019467 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)165594$$aForschungszentrum Jülich$$b0$$kFZJ
001019467 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)188583$$aForschungszentrum Jülich$$b1$$kFZJ
001019467 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)159481$$aForschungszentrum Jülich$$b2$$kFZJ
001019467 9101_ $$0I:(DE-HGF)0$$6P:(DE-Juel1)159481$$a Universität Bonn$$b2
001019467 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a Liverpool$$b3
001019467 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)185942$$aForschungszentrum Jülich$$b4$$kFZJ
001019467 9131_ $$0G:(DE-HGF)POF4-511$$1G:(DE-HGF)POF4-510$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5111$$aDE-HGF$$bKey Technologies$$lEngineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action$$vEnabling Computational- & Data-Intensive Science and Engineering$$x0
001019467 9141_ $$y2023
001019467 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001019467 920__ $$lyes
001019467 9201_ $$0I:(DE-Juel1)IAS-4-20090406$$kIAS-4$$lTheorie der Starken Wechselwirkung$$x0
001019467 9201_ $$0I:(DE-Juel1)VDB25$$kIKP-3$$lInstitut 3 (Theoretische Kernphysik)$$x1
001019467 9201_ $$0I:(DE-Juel1)CASA-20230315$$kCASA$$lCenter for Advanced Simulation and Analytics$$x2
001019467 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x3
001019467 980__ $$apreprint
001019467 980__ $$aVDB
001019467 980__ $$aUNRESTRICTED
001019467 980__ $$aI:(DE-Juel1)IAS-4-20090406
001019467 980__ $$aI:(DE-Juel1)VDB25
001019467 980__ $$aI:(DE-Juel1)CASA-20230315
001019467 980__ $$aI:(DE-Juel1)JSC-20090406
001019467 9801_ $$aFullTexts