001019492 001__ 1019492
001019492 005__ 20240712113121.0
001019492 0247_ $$2doi$$a10.20517/energymater.2023.07
001019492 0247_ $$2datacite_doi$$a10.34734/FZJ-2023-05439
001019492 0247_ $$2WOS$$aWOS:001108912800004
001019492 037__ $$aFZJ-2023-05439
001019492 041__ $$aEnglish
001019492 1001_ $$0P:(DE-Juel1)179440$$aKühn, Sebastian P.$$b0$$ufzj
001019492 245__ $$aImpact of in coin cell atmosphere on lithium metal battery performance
001019492 260__ $$aAlhambra CA$$b[Verlag nicht ermittelbar]$$c2023
001019492 3367_ $$2DRIVER$$aarticle
001019492 3367_ $$2DataCite$$aOutput Types/Journal article
001019492 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1705055203_18579
001019492 3367_ $$2BibTeX$$aARTICLE
001019492 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001019492 3367_ $$00$$2EndNote$$aJournal Article
001019492 520__ $$aResearch on lithium metal as a high-capacity anode for future lithium metal batteries (LMBs) is currently at an all-time high. To date, the different influences of a highly pure argon glovebox (GB) and an industry-relevant ambient dry room (DR) atmosphere have received little attention in the scientific community. In this paper, we report on the impact of in coin cell atmosphere (ICCA) on the performance of an LMB as well as its interphase characteristics and properties in combination with three organic carbonate-based electrolytes with and without two well-known interphase-forming additives, namely fluoroethylene carbonate (FEC) and vinylene carbonate (VC). The results obtained from this carefully executed systematic study show a substantial impact of the ICCA on solid electrolyte interphase (SEI) resistance (RSEI) and lithium stripping/plating homogeneity. In a transition metal cathode (NMC811) containing LMBs, a DR ICCA results in an up to 50% increase in lifetime due to the improved chemical composition of the cathode electrolyte interphase (CEI). Furthermore, different impacts on electrode characteristics and cell performance were observed depending on the utilized functional additive. Since this study focuses on a largely overlooked influential factor of LMB performance, it highlights the importance of comparability and transparency in published research and the importance of taking differences between research and industrial environments into consideration in the aim of establishing and commercializing LMB cell components.
001019492 536__ $$0G:(DE-HGF)POF4-1222$$a1222 - Components and Cells (POF4-122)$$cPOF4-122$$fPOF IV$$x0
001019492 536__ $$0G:(BMBF)13XP0225B$$aLillint - Thermodynamic and kinetic stability of the Lithium-Liquid Electrolyte Interface (13XP0225B)$$c13XP0225B$$x1
001019492 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001019492 7001_ $$0P:(DE-Juel1)190810$$aWeiling, Matthias$$b1$$ufzj
001019492 7001_ $$0P:(DE-Juel1)169877$$aDiddens, Diddo$$b2$$ufzj
001019492 7001_ $$0P:(DE-HGF)0$$aBaghernejad, Masoud$$b3
001019492 7001_ $$0P:(DE-Juel1)166130$$aWinter, Martin$$b4$$ufzj
001019492 7001_ $$0P:(DE-Juel1)171204$$aCekic-Laskovic, Isidora$$b5$$eCorresponding author$$ufzj
001019492 773__ $$0PERI:(DE-600)3165188-4$$a10.20517/energymater.2023.07$$p3000020$$tEnergy Materials$$v3$$x2770-5900$$y2023
001019492 8564_ $$uhttps://juser.fz-juelich.de/record/1019492/files/5561.pdf$$yOpenAccess
001019492 8564_ $$uhttps://juser.fz-juelich.de/record/1019492/files/5561.gif?subformat=icon$$xicon$$yOpenAccess
001019492 8564_ $$uhttps://juser.fz-juelich.de/record/1019492/files/5561.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
001019492 8564_ $$uhttps://juser.fz-juelich.de/record/1019492/files/5561.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
001019492 8564_ $$uhttps://juser.fz-juelich.de/record/1019492/files/5561.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
001019492 909CO $$ooai:juser.fz-juelich.de:1019492$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
001019492 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001019492 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
001019492 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)179440$$aForschungszentrum Jülich$$b0$$kFZJ
001019492 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)190810$$aForschungszentrum Jülich$$b1$$kFZJ
001019492 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)169877$$aForschungszentrum Jülich$$b2$$kFZJ
001019492 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)166130$$aForschungszentrum Jülich$$b4$$kFZJ
001019492 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)171204$$aForschungszentrum Jülich$$b5$$kFZJ
001019492 9131_ $$0G:(DE-HGF)POF4-122$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1222$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vElektrochemische Energiespeicherung$$x0
001019492 9141_ $$y2023
001019492 920__ $$lyes
001019492 9201_ $$0I:(DE-Juel1)IEK-12-20141217$$kIEK-12$$lHelmholtz-Institut Münster Ionenleiter für Energiespeicher$$x0
001019492 9801_ $$aFullTexts
001019492 980__ $$ajournal
001019492 980__ $$aVDB
001019492 980__ $$aUNRESTRICTED
001019492 980__ $$aI:(DE-Juel1)IEK-12-20141217
001019492 981__ $$aI:(DE-Juel1)IMD-4-20141217