| Home > Publications database > Ionic conductivity, viscosity, and self-diffusion coefficients of novel imidazole salts for lithium-ion battery electrolytes > print |
| 001 | 1019502 | ||
| 005 | 20240712113123.0 | ||
| 024 | 7 | _ | |a 10.1039/D3TA01217D |2 doi |
| 024 | 7 | _ | |a 2050-7488 |2 ISSN |
| 024 | 7 | _ | |a 2050-7496 |2 ISSN |
| 024 | 7 | _ | |a 10.34734/FZJ-2023-05449 |2 datacite_doi |
| 024 | 7 | _ | |a WOS:001000378400001 |2 WOS |
| 037 | _ | _ | |a FZJ-2023-05449 |
| 041 | _ | _ | |a English |
| 082 | _ | _ | |a 530 |
| 100 | 1 | _ | |a Szczęsna-Chrzan, Anna |0 P:(DE-HGF)0 |b 0 |
| 245 | _ | _ | |a Ionic conductivity, viscosity, and self-diffusion coefficients of novel imidazole salts for lithium-ion battery electrolytes |
| 260 | _ | _ | |a London [u.a.] |c 2023 |b RSC |
| 336 | 7 | _ | |a article |2 DRIVER |
| 336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
| 336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1705062829_25526 |2 PUB:(DE-HGF) |
| 336 | 7 | _ | |a ARTICLE |2 BibTeX |
| 336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
| 336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
| 520 | _ | _ | |a Lithium-ion battery performance and longevity depend critically on the conducting salt utilized in the electrolyte.With new avenues for multifunctional integration and optimization of functional properties, conducting saltsbeyond lithium hexafluorophosphate (LiPF6) need to be studied. Herein we elucidate on viscosity, ionicity,anion self-diffusion and ionic conductivity through variation of the length of the perfluoroalkyl side chainpresent in the anions of the used lithium imidazole salts. Specifically, we study LiPF6 in comparison withlithium 4,5-dicyano-2-(trifluoromethyl)imidazolide (LiTDI), lithium 4,5-dicyano-2-(pentafluoroethyl)imidazolide (LiPDI), and lithium 4,5-dicyano-2-(n-heptafluoropropyl)imidazolide (LiHDI). We find that the ionmobility of LiPF6 depends the least on viscosity and its ionicity is the highest among the electrolytesinvestigated here. LiTDI shows the strongest correlation between ion mobility and viscosity and the lowestionicity. LiPDI and LiHDI range between these two regarding their ionicity and the correlation of mobility withviscosity. The previously rarely studied anion self-diffusion coefficients exhibit a strong correlation withviscosity as it was to be expected. Differences between the LiTDI, LiPDI and LiHDI salts are minute. |
| 536 | _ | _ | |a 1221 - Fundamentals and Materials (POF4-122) |0 G:(DE-HGF)POF4-1221 |c POF4-122 |f POF IV |x 0 |
| 536 | _ | _ | |a BIG-MAP - Battery Interface Genome - Materials Acceleration Platform (957189) |0 G:(EU-Grant)957189 |c 957189 |f H2020-LC-BAT-2020-3 |x 1 |
| 536 | _ | _ | |a BATTERY 2030PLUS - BATTERY 2030+ large-scale research initiative: At the heart of a connected green society (957213) |0 G:(EU-Grant)957213 |c 957213 |f H2020-LC-BAT-2020-3 |x 2 |
| 588 | _ | _ | |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de |
| 700 | 1 | _ | |a Vogler, Monika |0 0000-0001-8514-5601 |b 1 |
| 700 | 1 | _ | |a Yan, Peng |0 P:(DE-Juel1)186842 |b 2 |u fzj |
| 700 | 1 | _ | |a Żukowska, Grażyna Zofia |0 P:(DE-HGF)0 |b 3 |
| 700 | 1 | _ | |a Wölke, Christian |0 P:(DE-Juel1)176954 |b 4 |
| 700 | 1 | _ | |a Ostrowska, Agnieszka |0 P:(DE-HGF)0 |b 5 |
| 700 | 1 | _ | |a Szymańska, Sara |0 P:(DE-HGF)0 |b 6 |
| 700 | 1 | _ | |a Marcinek, Marek |0 P:(DE-HGF)0 |b 7 |
| 700 | 1 | _ | |a Winter, Martin |0 P:(DE-Juel1)166130 |b 8 |u fzj |
| 700 | 1 | _ | |a Cekic-Laskovic, Isidora |0 P:(DE-Juel1)171204 |b 9 |e Corresponding author |
| 700 | 1 | _ | |a Wieczorek, Władysław |0 P:(DE-HGF)0 |b 10 |e Corresponding author |
| 700 | 1 | _ | |a Stein, Helge S. |0 0000-0002-3461-0232 |b 11 |e Corresponding author |
| 773 | _ | _ | |a 10.1039/D3TA01217D |g Vol. 11, no. 25, p. 13483 - 13492 |0 PERI:(DE-600)2702232-8 |n 25 |p 13483 - 13492 |t Journal of materials chemistry / A |v 11 |y 2023 |x 2050-7488 |
| 856 | 4 | _ | |y OpenAccess |u https://juser.fz-juelich.de/record/1019502/files/d3ta01217d.pdf |
| 856 | 4 | _ | |y OpenAccess |x icon |u https://juser.fz-juelich.de/record/1019502/files/d3ta01217d.gif?subformat=icon |
| 856 | 4 | _ | |y OpenAccess |x icon-1440 |u https://juser.fz-juelich.de/record/1019502/files/d3ta01217d.jpg?subformat=icon-1440 |
| 856 | 4 | _ | |y OpenAccess |x icon-180 |u https://juser.fz-juelich.de/record/1019502/files/d3ta01217d.jpg?subformat=icon-180 |
| 856 | 4 | _ | |y OpenAccess |x icon-640 |u https://juser.fz-juelich.de/record/1019502/files/d3ta01217d.jpg?subformat=icon-640 |
| 909 | C | O | |o oai:juser.fz-juelich.de:1019502 |p openaire |p open_access |p driver |p VDB |p ec_fundedresources |p dnbdelivery |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 2 |6 P:(DE-Juel1)186842 |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 4 |6 P:(DE-Juel1)176954 |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 8 |6 P:(DE-Juel1)166130 |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 9 |6 P:(DE-Juel1)171204 |
| 913 | 1 | _ | |a DE-HGF |b Forschungsbereich Energie |l Materialien und Technologien für die Energiewende (MTET) |1 G:(DE-HGF)POF4-120 |0 G:(DE-HGF)POF4-122 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-100 |4 G:(DE-HGF)POF |v Elektrochemische Energiespeicherung |9 G:(DE-HGF)POF4-1221 |x 0 |
| 914 | 1 | _ | |y 2023 |
| 915 | _ | _ | |a Creative Commons Attribution CC BY 3.0 |0 LIC:(DE-HGF)CCBY3 |2 HGFVOC |
| 915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
| 915 | _ | _ | |a National-Konsortium |0 StatID:(DE-HGF)0430 |2 StatID |d 2023-08-23 |w ger |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2023-08-23 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2023-08-23 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2023-08-23 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1160 |2 StatID |b Current Contents - Engineering, Computing and Technology |d 2023-08-23 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |d 2023-08-23 |
| 915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b J MATER CHEM A : 2022 |d 2023-08-23 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2023-08-23 |
| 915 | _ | _ | |a IF >= 10 |0 StatID:(DE-HGF)9910 |2 StatID |b J MATER CHEM A : 2022 |d 2023-08-23 |
| 920 | _ | _ | |l yes |
| 920 | 1 | _ | |0 I:(DE-Juel1)IEK-12-20141217 |k IEK-12 |l Helmholtz-Institut Münster Ionenleiter für Energiespeicher |x 0 |
| 980 | 1 | _ | |a FullTexts |
| 980 | _ | _ | |a journal |
| 980 | _ | _ | |a VDB |
| 980 | _ | _ | |a UNRESTRICTED |
| 980 | _ | _ | |a I:(DE-Juel1)IEK-12-20141217 |
| 981 | _ | _ | |a I:(DE-Juel1)IMD-4-20141217 |
| Library | Collection | CLSMajor | CLSMinor | Language | Author |
|---|