001019515 001__ 1019515
001019515 005__ 20240712113122.0
001019515 0247_ $$2doi$$a10.1002/batt.202200228
001019515 0247_ $$2datacite_doi$$a10.34734/FZJ-2023-05462
001019515 0247_ $$2WOS$$aWOS:000844221600001
001019515 037__ $$aFZJ-2023-05462
001019515 082__ $$a540
001019515 1001_ $$0P:(DE-HGF)0$$aRahmanian, Fuzhan$$b0
001019515 245__ $$aOne‐Shot Active Learning for Globally Optimal Battery Electrolyte Conductivity**
001019515 260__ $$aWeinheim$$bWiley-VCH$$c2022
001019515 3367_ $$2DRIVER$$aarticle
001019515 3367_ $$2DataCite$$aOutput Types/Journal article
001019515 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1705058454_17557
001019515 3367_ $$2BibTeX$$aARTICLE
001019515 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001019515 3367_ $$00$$2EndNote$$aJournal Article
001019515 520__ $$aNon-aqueous aprotic battery electrolytes need to perform wellover a wide range of temperatures in practical applications.Herein we present a one-shot active learning study to find allconductivity optima, confidence bounds, and relating formulationtrends in the temperature range from
001019515 536__ $$0G:(DE-HGF)POF4-1221$$a1221 - Fundamentals and Materials (POF4-122)$$cPOF4-122$$fPOF IV$$x0
001019515 536__ $$0G:(EU-Grant)957189$$aBIG-MAP - Battery Interface Genome - Materials Acceleration Platform (957189)$$c957189$$fH2020-LC-BAT-2020-3$$x1
001019515 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001019515 7001_ $$0P:(DE-HGF)0$$aVogler, Monika$$b1
001019515 7001_ $$0P:(DE-Juel1)176954$$aWölke, Christian$$b2$$ufzj
001019515 7001_ $$0P:(DE-Juel1)186842$$aYan, Peng$$b3$$ufzj
001019515 7001_ $$0P:(DE-Juel1)166130$$aWinter, Martin$$b4$$ufzj
001019515 7001_ $$0P:(DE-Juel1)171204$$aCekic-Laskovic, Isidora$$b5$$ufzj
001019515 7001_ $$00000-0002-3461-0232$$aStein, Helge S.$$b6$$eCorresponding author
001019515 773__ $$0PERI:(DE-600)2897248-X$$a10.1002/batt.202200228$$gVol. 5, no. 10, p. e202200228$$n10$$pe202200228$$tBatteries & supercaps$$v5$$x2566-6223$$y2022
001019515 8564_ $$uhttps://juser.fz-juelich.de/record/1019515/files/Batteries%20Supercaps%20-%202022%20-%20Rahmanian%20-%20One%E2%80%90Shot%20Active%20Learning%20for%20Globally%20Optimal%20Battery%20Electrolyte%20Conductivity.pdf$$yOpenAccess
001019515 8564_ $$uhttps://juser.fz-juelich.de/record/1019515/files/Batteries%20Supercaps%20-%202022%20-%20Rahmanian%20-%20One%E2%80%90Shot%20Active%20Learning%20for%20Globally%20Optimal%20Battery%20Electrolyte%20Conductivity.gif?subformat=icon$$xicon$$yOpenAccess
001019515 8564_ $$uhttps://juser.fz-juelich.de/record/1019515/files/Batteries%20Supercaps%20-%202022%20-%20Rahmanian%20-%20One%E2%80%90Shot%20Active%20Learning%20for%20Globally%20Optimal%20Battery%20Electrolyte%20Conductivity.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
001019515 8564_ $$uhttps://juser.fz-juelich.de/record/1019515/files/Batteries%20Supercaps%20-%202022%20-%20Rahmanian%20-%20One%E2%80%90Shot%20Active%20Learning%20for%20Globally%20Optimal%20Battery%20Electrolyte%20Conductivity.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
001019515 8564_ $$uhttps://juser.fz-juelich.de/record/1019515/files/Batteries%20Supercaps%20-%202022%20-%20Rahmanian%20-%20One%E2%80%90Shot%20Active%20Learning%20for%20Globally%20Optimal%20Battery%20Electrolyte%20Conductivity.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
001019515 909CO $$ooai:juser.fz-juelich.de:1019515$$pdnbdelivery$$pec_fundedresources$$pVDB$$pdriver$$popen_access$$popenaire
001019515 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)176954$$aForschungszentrum Jülich$$b2$$kFZJ
001019515 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)186842$$aForschungszentrum Jülich$$b3$$kFZJ
001019515 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)166130$$aForschungszentrum Jülich$$b4$$kFZJ
001019515 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)171204$$aForschungszentrum Jülich$$b5$$kFZJ
001019515 9131_ $$0G:(DE-HGF)POF4-122$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1221$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vElektrochemische Energiespeicherung$$x0
001019515 9141_ $$y2023
001019515 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-08-25
001019515 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2023-08-25
001019515 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
001019515 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bBATTERIES SUPERCAPS : 2022$$d2023-08-25
001019515 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bBATTERIES SUPERCAPS : 2022$$d2023-08-25
001019515 915__ $$0StatID:(DE-HGF)3001$$2StatID$$aDEAL Wiley$$d2023-08-25$$wger
001019515 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2023-08-25
001019515 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2023-08-25
001019515 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001019515 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2023-08-25
001019515 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2023-08-25
001019515 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2023-08-25
001019515 920__ $$lyes
001019515 9201_ $$0I:(DE-Juel1)IEK-12-20141217$$kIEK-12$$lHelmholtz-Institut Münster Ionenleiter für Energiespeicher$$x0
001019515 9801_ $$aFullTexts
001019515 980__ $$ajournal
001019515 980__ $$aVDB
001019515 980__ $$aUNRESTRICTED
001019515 980__ $$aI:(DE-Juel1)IEK-12-20141217
001019515 981__ $$aI:(DE-Juel1)IMD-4-20141217