Hauptseite > Publikationsdatenbank > One‐Shot Active Learning for Globally Optimal Battery Electrolyte Conductivity** > print |
001 | 1019515 | ||
005 | 20240712113122.0 | ||
024 | 7 | _ | |a 10.1002/batt.202200228 |2 doi |
024 | 7 | _ | |a 10.34734/FZJ-2023-05462 |2 datacite_doi |
024 | 7 | _ | |a WOS:000844221600001 |2 WOS |
037 | _ | _ | |a FZJ-2023-05462 |
082 | _ | _ | |a 540 |
100 | 1 | _ | |a Rahmanian, Fuzhan |0 P:(DE-HGF)0 |b 0 |
245 | _ | _ | |a One‐Shot Active Learning for Globally Optimal Battery Electrolyte Conductivity** |
260 | _ | _ | |a Weinheim |c 2022 |b Wiley-VCH |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1705058454_17557 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a Non-aqueous aprotic battery electrolytes need to perform wellover a wide range of temperatures in practical applications.Herein we present a one-shot active learning study to find allconductivity optima, confidence bounds, and relating formulationtrends in the temperature range from 30°C to 60°C. Thisoptimization is enabled by a high-throughput formulation andcharacterization setup guided by one-shot active learningutilizing robust and heavily regularized polynomial regression.Whilst there is an initially good agreement for intermediate andlow temperatures, there is a need for the active learning step toimprove the model for high temperatures. Optimized electrolyteformulations likely correspond to the highest physicallypossible conductivities within this formulation system whencompared to literature data. A thorough error propagationanalysis yields a fidelity assessment of conductivity measurementsand electrolyte formulation. |
536 | _ | _ | |a 1221 - Fundamentals and Materials (POF4-122) |0 G:(DE-HGF)POF4-1221 |c POF4-122 |f POF IV |x 0 |
536 | _ | _ | |a BIG-MAP - Battery Interface Genome - Materials Acceleration Platform (957189) |0 G:(EU-Grant)957189 |c 957189 |f H2020-LC-BAT-2020-3 |x 1 |
588 | _ | _ | |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de |
700 | 1 | _ | |a Vogler, Monika |0 P:(DE-HGF)0 |b 1 |
700 | 1 | _ | |a Wölke, Christian |0 P:(DE-Juel1)176954 |b 2 |u fzj |
700 | 1 | _ | |a Yan, Peng |0 P:(DE-Juel1)186842 |b 3 |u fzj |
700 | 1 | _ | |a Winter, Martin |0 P:(DE-Juel1)166130 |b 4 |u fzj |
700 | 1 | _ | |a Cekic-Laskovic, Isidora |0 P:(DE-Juel1)171204 |b 5 |u fzj |
700 | 1 | _ | |a Stein, Helge S. |0 0000-0002-3461-0232 |b 6 |e Corresponding author |
773 | _ | _ | |a 10.1002/batt.202200228 |g Vol. 5, no. 10, p. e202200228 |0 PERI:(DE-600)2897248-X |n 10 |p e202200228 |t Batteries & supercaps |v 5 |y 2022 |x 2566-6223 |
856 | 4 | _ | |y OpenAccess |u https://juser.fz-juelich.de/record/1019515/files/Batteries%20Supercaps%20-%202022%20-%20Rahmanian%20-%20One%E2%80%90Shot%20Active%20Learning%20for%20Globally%20Optimal%20Battery%20Electrolyte%20Conductivity.pdf |
856 | 4 | _ | |y OpenAccess |x icon |u https://juser.fz-juelich.de/record/1019515/files/Batteries%20Supercaps%20-%202022%20-%20Rahmanian%20-%20One%E2%80%90Shot%20Active%20Learning%20for%20Globally%20Optimal%20Battery%20Electrolyte%20Conductivity.gif?subformat=icon |
856 | 4 | _ | |y OpenAccess |x icon-1440 |u https://juser.fz-juelich.de/record/1019515/files/Batteries%20Supercaps%20-%202022%20-%20Rahmanian%20-%20One%E2%80%90Shot%20Active%20Learning%20for%20Globally%20Optimal%20Battery%20Electrolyte%20Conductivity.jpg?subformat=icon-1440 |
856 | 4 | _ | |y OpenAccess |x icon-180 |u https://juser.fz-juelich.de/record/1019515/files/Batteries%20Supercaps%20-%202022%20-%20Rahmanian%20-%20One%E2%80%90Shot%20Active%20Learning%20for%20Globally%20Optimal%20Battery%20Electrolyte%20Conductivity.jpg?subformat=icon-180 |
856 | 4 | _ | |y OpenAccess |x icon-640 |u https://juser.fz-juelich.de/record/1019515/files/Batteries%20Supercaps%20-%202022%20-%20Rahmanian%20-%20One%E2%80%90Shot%20Active%20Learning%20for%20Globally%20Optimal%20Battery%20Electrolyte%20Conductivity.jpg?subformat=icon-640 |
909 | C | O | |o oai:juser.fz-juelich.de:1019515 |p openaire |p open_access |p driver |p VDB |p ec_fundedresources |p dnbdelivery |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 2 |6 P:(DE-Juel1)176954 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 3 |6 P:(DE-Juel1)186842 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 4 |6 P:(DE-Juel1)166130 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 5 |6 P:(DE-Juel1)171204 |
913 | 1 | _ | |a DE-HGF |b Forschungsbereich Energie |l Materialien und Technologien für die Energiewende (MTET) |1 G:(DE-HGF)POF4-120 |0 G:(DE-HGF)POF4-122 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-100 |4 G:(DE-HGF)POF |v Elektrochemische Energiespeicherung |9 G:(DE-HGF)POF4-1221 |x 0 |
914 | 1 | _ | |y 2023 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2023-08-25 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2023-08-25 |
915 | _ | _ | |a Creative Commons Attribution CC BY 4.0 |0 LIC:(DE-HGF)CCBY4 |2 HGFVOC |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b BATTERIES SUPERCAPS : 2022 |d 2023-08-25 |
915 | _ | _ | |a IF >= 5 |0 StatID:(DE-HGF)9905 |2 StatID |b BATTERIES SUPERCAPS : 2022 |d 2023-08-25 |
915 | _ | _ | |a DEAL Wiley |0 StatID:(DE-HGF)3001 |2 StatID |d 2023-08-25 |w ger |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2023-08-25 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2023-08-25 |
915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |d 2023-08-25 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2023-08-25 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2023-08-25 |
920 | _ | _ | |l yes |
920 | 1 | _ | |0 I:(DE-Juel1)IEK-12-20141217 |k IEK-12 |l Helmholtz-Institut Münster Ionenleiter für Energiespeicher |x 0 |
980 | 1 | _ | |a FullTexts |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a UNRESTRICTED |
980 | _ | _ | |a I:(DE-Juel1)IEK-12-20141217 |
981 | _ | _ | |a I:(DE-Juel1)IMD-4-20141217 |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|