001     1019515
005     20240712113122.0
024 7 _ |a 10.1002/batt.202200228
|2 doi
024 7 _ |a 10.34734/FZJ-2023-05462
|2 datacite_doi
024 7 _ |a WOS:000844221600001
|2 WOS
037 _ _ |a FZJ-2023-05462
082 _ _ |a 540
100 1 _ |a Rahmanian, Fuzhan
|0 P:(DE-HGF)0
|b 0
245 _ _ |a One‐Shot Active Learning for Globally Optimal Battery Electrolyte Conductivity**
260 _ _ |a Weinheim
|c 2022
|b Wiley-VCH
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1705058454_17557
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Non-aqueous aprotic battery electrolytes need to perform wellover a wide range of temperatures in practical applications.Herein we present a one-shot active learning study to find allconductivity optima, confidence bounds, and relating formulationtrends in the temperature range from 􀀀 30°C to 60°C. Thisoptimization is enabled by a high-throughput formulation andcharacterization setup guided by one-shot active learningutilizing robust and heavily regularized polynomial regression.Whilst there is an initially good agreement for intermediate andlow temperatures, there is a need for the active learning step toimprove the model for high temperatures. Optimized electrolyteformulations likely correspond to the highest physicallypossible conductivities within this formulation system whencompared to literature data. A thorough error propagationanalysis yields a fidelity assessment of conductivity measurementsand electrolyte formulation.
536 _ _ |a 1221 - Fundamentals and Materials (POF4-122)
|0 G:(DE-HGF)POF4-1221
|c POF4-122
|f POF IV
|x 0
536 _ _ |a BIG-MAP - Battery Interface Genome - Materials Acceleration Platform (957189)
|0 G:(EU-Grant)957189
|c 957189
|f H2020-LC-BAT-2020-3
|x 1
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Vogler, Monika
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Wölke, Christian
|0 P:(DE-Juel1)176954
|b 2
|u fzj
700 1 _ |a Yan, Peng
|0 P:(DE-Juel1)186842
|b 3
|u fzj
700 1 _ |a Winter, Martin
|0 P:(DE-Juel1)166130
|b 4
|u fzj
700 1 _ |a Cekic-Laskovic, Isidora
|0 P:(DE-Juel1)171204
|b 5
|u fzj
700 1 _ |a Stein, Helge S.
|0 0000-0002-3461-0232
|b 6
|e Corresponding author
773 _ _ |a 10.1002/batt.202200228
|g Vol. 5, no. 10, p. e202200228
|0 PERI:(DE-600)2897248-X
|n 10
|p e202200228
|t Batteries & supercaps
|v 5
|y 2022
|x 2566-6223
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/1019515/files/Batteries%20Supercaps%20-%202022%20-%20Rahmanian%20-%20One%E2%80%90Shot%20Active%20Learning%20for%20Globally%20Optimal%20Battery%20Electrolyte%20Conductivity.pdf
856 4 _ |y OpenAccess
|x icon
|u https://juser.fz-juelich.de/record/1019515/files/Batteries%20Supercaps%20-%202022%20-%20Rahmanian%20-%20One%E2%80%90Shot%20Active%20Learning%20for%20Globally%20Optimal%20Battery%20Electrolyte%20Conductivity.gif?subformat=icon
856 4 _ |y OpenAccess
|x icon-1440
|u https://juser.fz-juelich.de/record/1019515/files/Batteries%20Supercaps%20-%202022%20-%20Rahmanian%20-%20One%E2%80%90Shot%20Active%20Learning%20for%20Globally%20Optimal%20Battery%20Electrolyte%20Conductivity.jpg?subformat=icon-1440
856 4 _ |y OpenAccess
|x icon-180
|u https://juser.fz-juelich.de/record/1019515/files/Batteries%20Supercaps%20-%202022%20-%20Rahmanian%20-%20One%E2%80%90Shot%20Active%20Learning%20for%20Globally%20Optimal%20Battery%20Electrolyte%20Conductivity.jpg?subformat=icon-180
856 4 _ |y OpenAccess
|x icon-640
|u https://juser.fz-juelich.de/record/1019515/files/Batteries%20Supercaps%20-%202022%20-%20Rahmanian%20-%20One%E2%80%90Shot%20Active%20Learning%20for%20Globally%20Optimal%20Battery%20Electrolyte%20Conductivity.jpg?subformat=icon-640
909 C O |o oai:juser.fz-juelich.de:1019515
|p openaire
|p open_access
|p driver
|p VDB
|p ec_fundedresources
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)176954
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)186842
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)166130
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)171204
913 1 _ |a DE-HGF
|b Forschungsbereich Energie
|l Materialien und Technologien für die Energiewende (MTET)
|1 G:(DE-HGF)POF4-120
|0 G:(DE-HGF)POF4-122
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-100
|4 G:(DE-HGF)POF
|v Elektrochemische Energiespeicherung
|9 G:(DE-HGF)POF4-1221
|x 0
914 1 _ |y 2023
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2023-08-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2023-08-25
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b BATTERIES SUPERCAPS : 2022
|d 2023-08-25
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b BATTERIES SUPERCAPS : 2022
|d 2023-08-25
915 _ _ |a DEAL Wiley
|0 StatID:(DE-HGF)3001
|2 StatID
|d 2023-08-25
|w ger
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2023-08-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2023-08-25
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2023-08-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2023-08-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2023-08-25
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-12-20141217
|k IEK-12
|l Helmholtz-Institut Münster Ionenleiter für Energiespeicher
|x 0
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-12-20141217
981 _ _ |a I:(DE-Juel1)IMD-4-20141217


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21