Hauptseite > Publikationsdatenbank > Data‐Driven Analysis of High‐Throughput Experiments on Liquid Battery Electrolyte Formulations: Unraveling the Impact of Composition on Conductivity** > print |
001 | 1019516 | ||
005 | 20240712113122.0 | ||
024 | 7 | _ | |a 10.1002/cmtd.202200008 |2 doi |
024 | 7 | _ | |a 10.34734/FZJ-2023-05463 |2 datacite_doi |
024 | 7 | _ | |a WOS:001054525700004 |2 WOS |
037 | _ | _ | |a FZJ-2023-05463 |
082 | _ | _ | |a 540 |
100 | 1 | _ | |a Narayanan Krishnamoorthy, Anand |0 P:(DE-HGF)0 |b 0 |
245 | _ | _ | |a Data‐Driven Analysis of High‐Throughput Experiments on Liquid Battery Electrolyte Formulations: Unraveling the Impact of Composition on Conductivity** |
260 | _ | _ | |a Weinheim (Germany) |c 2022 |b Wiley-VCH |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1705056360_25526 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a A specially designed high-throughput experimentation facility,used for the highly effective exploration of electrolyte formulationsin composition space for diverse battery chemistries andtargeted applications, is presented. It follows a high-throughputformulation-characterization-optimization chain based on a setof previously established electrolyte-related requirements. Here,the facility is used to acquire large dataset of ionic conductivitiesof non-aqueous battery electrolytes in the conducting saltsolvent/co-solvent-additive composition space. The measuredtemperature dependence is mapped on three generalizedArrhenius parameters, including deviations from simple activateddynamics. This reduced dataset is thereafter analyzed bya scalable data-driven workflow, based on linear and Gaussianprocess regression, providing detailed information about thecompositional dependence of the conductivity. Completeinsensitivity to the addition of electrolyte additives for otherwiseconstant molar composition is observed. Quantitativedependencies, for example, on the temperature-dependentconducting salt content for optimum conductivity are providedand discussed in light of physical properties such as viscosityand ion association effects. |
536 | _ | _ | |a 1222 - Components and Cells (POF4-122) |0 G:(DE-HGF)POF4-1222 |c POF4-122 |f POF IV |x 0 |
536 | _ | _ | |a BIG-MAP - Battery Interface Genome - Materials Acceleration Platform (957189) |0 G:(EU-Grant)957189 |c 957189 |f H2020-LC-BAT-2020-3 |x 1 |
588 | _ | _ | |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de |
700 | 1 | _ | |a Wölke, Christian |0 P:(DE-Juel1)176954 |b 1 |u fzj |
700 | 1 | _ | |a Diddens, Diddo |0 P:(DE-Juel1)169877 |b 2 |u fzj |
700 | 1 | _ | |a Maiti, Moumita |0 P:(DE-HGF)0 |b 3 |
700 | 1 | _ | |a Mabrouk, Youssef |0 P:(DE-Juel1)187475 |b 4 |u fzj |
700 | 1 | _ | |a Yan, Peng |0 P:(DE-Juel1)186842 |b 5 |u fzj |
700 | 1 | _ | |a Grünebaum, Mariano |0 P:(DE-Juel1)166392 |b 6 |u fzj |
700 | 1 | _ | |a Winter, Martin |0 P:(DE-Juel1)166130 |b 7 |u fzj |
700 | 1 | _ | |a Heuer, Andreas |0 P:(DE-Juel1)176646 |b 8 |u fzj |
700 | 1 | _ | |a Cekic-Laskovic, Isidora |0 P:(DE-Juel1)171204 |b 9 |e Corresponding author |
773 | _ | _ | |a 10.1002/cmtd.202200008 |g Vol. 2, no. 9, p. e202200008 |0 PERI:(DE-600)2972304-8 |n 9 |p e202200008 |t Chemistry methods |v 2 |y 2022 |x 2628-9725 |
856 | 4 | _ | |y OpenAccess |u https://juser.fz-juelich.de/record/1019516/files/Chemistry%20Methods%20-%202022%20-%20Narayanan%20Krishnamoorthy%20-%20Data%E2%80%90Driven%20Analysis%20of%20High%E2%80%90Throughput%20Experiments%20on%20Liquid%20Battery.pdf |
856 | 4 | _ | |y OpenAccess |u https://juser.fz-juelich.de/record/1019516/files/Manuscript%20CM.docx |
856 | 4 | _ | |y OpenAccess |x icon |u https://juser.fz-juelich.de/record/1019516/files/Chemistry%20Methods%20-%202022%20-%20Narayanan%20Krishnamoorthy%20-%20Data%E2%80%90Driven%20Analysis%20of%20High%E2%80%90Throughput%20Experiments%20on%20Liquid%20Battery.gif?subformat=icon |
856 | 4 | _ | |y OpenAccess |x icon-1440 |u https://juser.fz-juelich.de/record/1019516/files/Chemistry%20Methods%20-%202022%20-%20Narayanan%20Krishnamoorthy%20-%20Data%E2%80%90Driven%20Analysis%20of%20High%E2%80%90Throughput%20Experiments%20on%20Liquid%20Battery.jpg?subformat=icon-1440 |
856 | 4 | _ | |y OpenAccess |x icon-180 |u https://juser.fz-juelich.de/record/1019516/files/Chemistry%20Methods%20-%202022%20-%20Narayanan%20Krishnamoorthy%20-%20Data%E2%80%90Driven%20Analysis%20of%20High%E2%80%90Throughput%20Experiments%20on%20Liquid%20Battery.jpg?subformat=icon-180 |
856 | 4 | _ | |y OpenAccess |x icon-640 |u https://juser.fz-juelich.de/record/1019516/files/Chemistry%20Methods%20-%202022%20-%20Narayanan%20Krishnamoorthy%20-%20Data%E2%80%90Driven%20Analysis%20of%20High%E2%80%90Throughput%20Experiments%20on%20Liquid%20Battery.jpg?subformat=icon-640 |
909 | C | O | |o oai:juser.fz-juelich.de:1019516 |p openaire |p open_access |p driver |p VDB |p ec_fundedresources |p dnbdelivery |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 1 |6 P:(DE-Juel1)176954 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 2 |6 P:(DE-Juel1)169877 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 4 |6 P:(DE-Juel1)187475 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 5 |6 P:(DE-Juel1)186842 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 6 |6 P:(DE-Juel1)166392 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 7 |6 P:(DE-Juel1)166130 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 8 |6 P:(DE-Juel1)176646 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 9 |6 P:(DE-Juel1)171204 |
913 | 1 | _ | |a DE-HGF |b Forschungsbereich Energie |l Materialien und Technologien für die Energiewende (MTET) |1 G:(DE-HGF)POF4-120 |0 G:(DE-HGF)POF4-122 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-100 |4 G:(DE-HGF)POF |v Elektrochemische Energiespeicherung |9 G:(DE-HGF)POF4-1222 |x 0 |
914 | 1 | _ | |y 2023 |
915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
915 | _ | _ | |a Creative Commons Attribution-NonCommercial CC BY-NC 4.0 |0 LIC:(DE-HGF)CCBYNC4 |2 HGFVOC |
920 | _ | _ | |l yes |
920 | 1 | _ | |0 I:(DE-Juel1)IEK-12-20141217 |k IEK-12 |l Helmholtz-Institut Münster Ionenleiter für Energiespeicher |x 0 |
980 | 1 | _ | |a FullTexts |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a UNRESTRICTED |
980 | _ | _ | |a I:(DE-Juel1)IEK-12-20141217 |
981 | _ | _ | |a I:(DE-Juel1)IMD-4-20141217 |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|