001     1019517
005     20240712113122.0
024 7 _ |a 10.1016/j.jpowsour.2023.233051
|2 doi
024 7 _ |a 0378-7753
|2 ISSN
024 7 _ |a 1873-2755
|2 ISSN
024 7 _ |a 10.34734/FZJ-2023-05464
|2 datacite_doi
024 7 _ |a WOS:001054211000001
|2 WOS
037 _ _ |a FZJ-2023-05464
082 _ _ |a 620
100 1 _ |a Jiang, Lihua
|0 P:(DE-HGF)0
|b 0
245 _ _ |a A nonflammable diethyl ethylphosphonate-based electrolyte improved by synergistic effect of lithium difluoro(oxalato)borate and fluoroethylene carbonate
260 _ _ |a New York, NY [u.a.]
|c 2023
|b Elsevier
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1705052965_17557
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The vital physical and chemical properties of the lithium conducting salt, solvent/co-solvent and functionaladditive determine the overall properties and performance of the resulting electrolyte formulation. Explorationson right combinations of the carefully selected electrolyte components are expected to further balance theelectrochemical and safety performances of chosen electrolyte formulations in given cell chemistries. In thisstudy, a new nonaqueous aprotic electrolyte is designed by using lithium difluoro(oxalato)borate (LiODFB) asconducting salt, diethyl ethylphosphonate (DEEP) as solvent, and fluoroethylene carbonate (FEC) as co-solvent toachieve a nonflammable electrolyte formulation with competent electrochemical performance. The LiODFB andFEC are believed to take part in complex interfacial interactions with a synergistic effect. LiNi0.8Co0.1Mn0.1O2(NCM811)‖Li cells using the optimized electrolyte formulation of 1.3 M LiODFB/DEEP 30% FEC exhibits a stablelong-term cycling performance at 1.0 C with a reversible average specific discharge capacity of 169.5 mAh g􀀀 1during 100 cycles, which is comparable to cells using commercial electrolytes. Furthermore, the 1.3 M LiODFB/DEEP 30% FEC electrolyte shows good thermal stability and effectively reduces the heat generation duringthermal decomposition of NCM811 cathode. The results provide a good reference for the design of next generationof safe, nonflammable electrolytes for lithium-based battery application.
536 _ _ |a 1221 - Fundamentals and Materials (POF4-122)
|0 G:(DE-HGF)POF4-1221
|c POF4-122
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Cheng, Yuan
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Wang, Shuping
|0 P:(DE-HGF)0
|b 2
|e Corresponding author
700 1 _ |a Cheng, Yifeng
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Jin, Kaiqiang
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Sun, Jinhua
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Winter, Martin
|0 P:(DE-Juel1)166130
|b 6
|u fzj
700 1 _ |a Cekic-Laskovic, Isidora
|0 P:(DE-Juel1)171204
|b 7
|e Corresponding author
700 1 _ |a Wang, Qingsong
|0 0000-0002-6686-195X
|b 8
773 _ _ |a 10.1016/j.jpowsour.2023.233051
|g Vol. 570, p. 233051 -
|0 PERI:(DE-600)1491915-1
|p 233051 -
|t Journal of power sources
|v 570
|y 2023
|x 0378-7753
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/1019517/files/JPS%20manuscript.pdf
856 4 _ |y OpenAccess
|x icon
|u https://juser.fz-juelich.de/record/1019517/files/JPS%20manuscript.gif?subformat=icon
856 4 _ |y OpenAccess
|x icon-1440
|u https://juser.fz-juelich.de/record/1019517/files/JPS%20manuscript.jpg?subformat=icon-1440
856 4 _ |y OpenAccess
|x icon-180
|u https://juser.fz-juelich.de/record/1019517/files/JPS%20manuscript.jpg?subformat=icon-180
856 4 _ |y OpenAccess
|x icon-640
|u https://juser.fz-juelich.de/record/1019517/files/JPS%20manuscript.jpg?subformat=icon-640
909 C O |o oai:juser.fz-juelich.de:1019517
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)166130
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 7
|6 P:(DE-Juel1)171204
913 1 _ |a DE-HGF
|b Forschungsbereich Energie
|l Materialien und Technologien für die Energiewende (MTET)
|1 G:(DE-HGF)POF4-120
|0 G:(DE-HGF)POF4-122
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-100
|4 G:(DE-HGF)POF
|v Elektrochemische Energiespeicherung
|9 G:(DE-HGF)POF4-1221
|x 0
914 1 _ |y 2023
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2023-08-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2023-08-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
|d 2023-08-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2023-08-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2023-08-28
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b J POWER SOURCES : 2022
|d 2023-08-28
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2023-08-28
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2023-08-28
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b J POWER SOURCES : 2022
|d 2023-08-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2023-08-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2023-08-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2023-08-28
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-12-20141217
|k IEK-12
|l Helmholtz-Institut Münster Ionenleiter für Energiespeicher
|x 0
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-12-20141217
981 _ _ |a I:(DE-Juel1)IMD-4-20141217


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21