| Home > Publications database > Learning the laws of lithium-ion transport inelectrolytes using symbolic regression† > print |
| 001 | 1019519 | ||
| 005 | 20240712113122.0 | ||
| 024 | 7 | _ | |a 10.1039/D2DD00027J |2 doi |
| 024 | 7 | _ | |a 10.34734/FZJ-2023-05466 |2 datacite_doi |
| 024 | 7 | _ | |a WOS:001101457500001 |2 WOS |
| 037 | _ | _ | |a FZJ-2023-05466 |
| 082 | _ | _ | |a 004 |
| 100 | 1 | _ | |a Flores, Eibar |0 P:(DE-HGF)0 |b 0 |e Corresponding author |
| 245 | _ | _ | |a Learning the laws of lithium-ion transport inelectrolytes using symbolic regression† |
| 260 | _ | _ | |a Washington DC |c 2022 |b Royal Society of Chemistry |
| 336 | 7 | _ | |a article |2 DRIVER |
| 336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
| 336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1711453052_4228 |2 PUB:(DE-HGF) |
| 336 | 7 | _ | |a ARTICLE |2 BibTeX |
| 336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
| 336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
| 520 | _ | _ | |a High-throughput experiments (HTE) enable fast exploration of advanced battery electrolytes over vast compositional spaces. Among the multiple properties considered for optimal electrolyte performance, the conductivity is critical. An analytical expression for ionic transport in electrolytes, accurate for practical compositions and operating conditions, would accelerate the process of (i) co-optimizing conductivity alongside other desirable electrolyte properties, and (ii) learning fundamental physical laws from data, which is one of the paramount goals of scientific big-data analytics. Here, we used symbolic regression with an HTE-acquired dataset of electrolyte conductivity and discovered a simple, accurate, consistent and generalizable expression. Notably, despite emerging from a purely statistical approach, the expression reflects functional aspects from established thermodynamic limiting laws, indicating our model is grounded on the fundamental physical mechanisms underpinning ionic transport. We demonstrate the potential of using machine learning with HTE to find accurate and physically-sound models in complex systems without established physico-chemical theories. |
| 536 | _ | _ | |a 1222 - Components and Cells (POF4-122) |0 G:(DE-HGF)POF4-1222 |c POF4-122 |f POF IV |x 0 |
| 536 | _ | _ | |a BIG-MAP - Battery Interface Genome - Materials Acceleration Platform (957189) |0 G:(EU-Grant)957189 |c 957189 |f H2020-LC-BAT-2020-3 |x 1 |
| 588 | _ | _ | |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de |
| 700 | 1 | _ | |a Wölke, Christian |0 P:(DE-Juel1)176954 |b 1 |u fzj |
| 700 | 1 | _ | |a Yan, Peng |0 P:(DE-Juel1)186842 |b 2 |u fzj |
| 700 | 1 | _ | |a Winter, Martin |0 P:(DE-Juel1)166130 |b 3 |u fzj |
| 700 | 1 | _ | |a Vegge, Tejs |0 P:(DE-HGF)0 |b 4 |
| 700 | 1 | _ | |a Cekic-Laskovic, Isidora |0 P:(DE-Juel1)171204 |b 5 |u fzj |
| 700 | 1 | _ | |a Bhowmik, Arghya |0 P:(DE-HGF)0 |b 6 |e Corresponding author |
| 773 | _ | _ | |a 10.1039/D2DD00027J |g Vol. 1, no. 4, p. 440 - 447 |0 PERI:(DE-600)3142965-8 |n 4 |p 440-447 |t Digital discovery |v 1 |y 2022 |x 2635-098X |
| 856 | 4 | _ | |y OpenAccess |u https://juser.fz-juelich.de/record/1019519/files/Learning%20the%20laws%20of%20lithium-ion%20transport%20inelectrolytes%20using%20symbolic%20regression%E2%80%A0.pdf |
| 856 | 4 | _ | |y OpenAccess |x icon |u https://juser.fz-juelich.de/record/1019519/files/Learning%20the%20laws%20of%20lithium-ion%20transport%20inelectrolytes%20using%20symbolic%20regression%E2%80%A0.gif?subformat=icon |
| 856 | 4 | _ | |y OpenAccess |x icon-1440 |u https://juser.fz-juelich.de/record/1019519/files/Learning%20the%20laws%20of%20lithium-ion%20transport%20inelectrolytes%20using%20symbolic%20regression%E2%80%A0.jpg?subformat=icon-1440 |
| 856 | 4 | _ | |y OpenAccess |x icon-180 |u https://juser.fz-juelich.de/record/1019519/files/Learning%20the%20laws%20of%20lithium-ion%20transport%20inelectrolytes%20using%20symbolic%20regression%E2%80%A0.jpg?subformat=icon-180 |
| 856 | 4 | _ | |y OpenAccess |x icon-640 |u https://juser.fz-juelich.de/record/1019519/files/Learning%20the%20laws%20of%20lithium-ion%20transport%20inelectrolytes%20using%20symbolic%20regression%E2%80%A0.jpg?subformat=icon-640 |
| 909 | C | O | |o oai:juser.fz-juelich.de:1019519 |p openaire |p open_access |p driver |p VDB |p ec_fundedresources |p dnbdelivery |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 1 |6 P:(DE-Juel1)176954 |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 2 |6 P:(DE-Juel1)186842 |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 3 |6 P:(DE-Juel1)166130 |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 5 |6 P:(DE-Juel1)171204 |
| 913 | 1 | _ | |a DE-HGF |b Forschungsbereich Energie |l Materialien und Technologien für die Energiewende (MTET) |1 G:(DE-HGF)POF4-120 |0 G:(DE-HGF)POF4-122 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-100 |4 G:(DE-HGF)POF |v Elektrochemische Energiespeicherung |9 G:(DE-HGF)POF4-1222 |x 0 |
| 915 | _ | _ | |a Creative Commons Attribution CC BY 3.0 |0 LIC:(DE-HGF)CCBY3 |2 HGFVOC |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0501 |2 StatID |b DOAJ Seal |d 2022-06-22T13:37:40Z |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0500 |2 StatID |b DOAJ |d 2022-06-22T13:37:40Z |
| 915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
| 915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b DOAJ : Anonymous peer review |d 2022-06-22T13:37:40Z |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2023-08-30 |
| 920 | _ | _ | |l yes |
| 920 | 1 | _ | |0 I:(DE-Juel1)IEK-12-20141217 |k IEK-12 |l Helmholtz-Institut Münster Ionenleiter für Energiespeicher |x 0 |
| 980 | 1 | _ | |a FullTexts |
| 980 | _ | _ | |a journal |
| 980 | _ | _ | |a VDB |
| 980 | _ | _ | |a UNRESTRICTED |
| 980 | _ | _ | |a I:(DE-Juel1)IEK-12-20141217 |
| 981 | _ | _ | |a I:(DE-Juel1)IMD-4-20141217 |
| Library | Collection | CLSMajor | CLSMinor | Language | Author |
|---|