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Abstract We consider two particles interacting via a con-
tact interaction that are constrained to a sphere, or S2. We
determine their spectrum to arbitrary precision and for arbi-
trary angular momentum. We show how the non-inertial
frame leads to non-trivial solutions for different angular
momenta. Our results represent an extension of the finite-
volume Lüscher formulas but now to a non-trivial geometry.
We apply our results to predict the spectrum of select two-
nucleon halo nuclei and compare with experimental results.

1 Introduction

The eigenvalue solutions to two interacting particles is a
standard topic introduced to beginning students of quan-
tum mechanics. Typical first examples include two particles
interacting via a contact interaction and the Coulombic solu-
tions of oppositely charged particles. These examples serve
as a stepping stone to more complicated quantum mechanical
many-body systems whose solutions are usually not known.

Besides serving a great pedagogical introduction to many-
body quantum mechanics, the two-body system itself plays
an important role in multiple fields of physics. For exam-
ple, when the particles are placed within a finite cubic vol-
ume their eigenvalue solutions satisfy Lüscher’s quantiza-
tion formula [2,23–25]. Lattice Quantum Chromodynamics
(LQCD) calculations of composite two-body systems within
a finite volume utilize this relation to extract infinite-volume
interaction parameters between these particles [4,5]. Some-
times the finite-volume is dictated by the experimental setup
as opposed to numerical convenience, as is the case with cold-
ion traps. Here the confinement of the two particles can be sat-
isfactorily approximated by an external harmonic oscillator
well. Again, the energy solutions here [6,26] provide infor-
mation on the interacting properties of the particles within
this confinement, and in particular whether the two particles
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undergo a Feshbach resonance when their scattering length
diverges [19]. As a final example, solutions exist for two inter-
acting particles within a hard spherical wall [22], providing a
means for “tuning” interaction parameters for many-nucleon
simulations using nuclear lattice effective field theory [1,21].

The examples above refer to systems residing in three spa-
tial dimensions. But in all these cases there are corresponding
solutions in both one- and two-dimensions. A tacit assump-
tion here is that the interaction between the two particles
only depends on their relative coordinates. When this is the
case, and if the geometry allows it, one can readily separate
the system into its relative (Jacobi) and center-of-mass (CM)
coordinates. This provides a great simplification to the eigen-
value solutions since one can work solely within the inertial
frame.

In this paper we consider two particles confined to a sphere
of arbitrary radius R (i.e. confined to S2) and that interact
via a contact interaction. Though this interaction again only
depends on the relative coordinates, the surface S2 is a non-
inertial frame that affords no general separation of relative
and CM coordinates and as such there is no simplification
to the eigenvalue solution.1 Yet we show how solutions of
arbitrary precision to this system can be found. Furthermore,
because of the non-inertial frame, we find an infinite tower
of solutions depending on the angular momentum L . We
view this system as another excellent pedagogical example
of two quantum mechanical interacting particles, but this time
within a non-inertial frame.

We then apply our formalism to select two-nucleon halo
nuclei. This continues our pedagogical theme as it serves
two purposes. First, it demonstrates how one uses the low-
energy spectrum of physical systems to constrain the inter-
action parameters of our model. Interestingly, we find our
extracted 2-d scattering lengths share similar features to their
3-d analogs. Second, and just as important, it demonstrates

1 The exception is the case with zero total angular momentum [8].
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Fig. 1 Two particles confined to the surface of a sphere of radius R.
The internal angular coordinates are only shown for the first particle to
reduce clutter

the limitations of our model. Obviously halo nuclei are com-
plicated many-body systems and approximating such sys-
tems with our model is a gross simplification.

Our paper is organized as follows. In Sect. 2 we define our
problem. We derive the quantization conditions for arbitrary
total angular momentum L in terms of direct summations in
Sect. 2.3. When considering explicit values for L , we find
analytic expressions for the summations, which we provide
for L = 0 up to L = 2 in Sect. 2.4. We stress, however, that all
solutions for L > 2 can be readily found using our method.
We then apply our results to extract interaction parameters
of two-nucleon halo nuclei in Sect. 3. We recapitulate in
Sect. 4. Detailed and lengthy derivations are reserved for the
appendices.

2 Problem setup

We consider two particles of equal mass m confined to
the surface of ball of radius R, as shown in Fig. 1. The par-
ticles’ positions are then solely dictated by their angles r̂1

and r̂2, which in turn can be expanded in a basis of spherical
harmonics 〈r̂ |l,ml〉 = Ylml (r̂).

The kinetic term of the Hamiltonian describing such par-
ticle movement is well known and is that of a rigid motor,2

T̂ |l,ml〉 = l(l + 1)

2mR2 |l,ml〉 ≡ εl |l,ml〉. (1)

2 We set h̄ = c = 1 in all our expressions.

2.1 The contact interaction

We assume that the particles interact via a contact interaction
only, which in this geometry is given in coordinate space by

V̂12|r̂1; r̂2〉 = |r̂1; r̂2〉C0(Λ)

R2 δ
(
r̂1 − r̂2

)

= |r̂1; r̂2〉C0(Λ)

R2 δ(cos θ1 − cos θ2)δ(φ1 − φ2).

(2)

HereC0(Λ) is a coefficient that is tuned to reproduce a partic-
ular observable of the two-particle system and the variable
Λ represents a momentum cutoff scale. The procedure for
tuning this coefficient is non-trivial but has been done previ-
ously in [3,20], and we only mention some salient features
of this procedure relevant to our analysis in Sect. 3. For a
more thorough description of this tuning we recommend the
reader consult the aforementioned references.

The relevant physical observable is the s-wave scattering
length ã, which in two dimensions is dimensionless, despite
its name [16]. To a certain degree, the magnitude and sign
of this parameter dictates how strongly the particles repul-
sively or attractively interact with one other. We can define
a ‘reduced scattering length’ a that is dimensionful by intro-
ducing an arbitrary length scale. We set this length scale to be
the radius R of our sphere. The relation between the physical
scattering length ã (dimensionless) and reduced scattering
length a (dimension of length) is given by [16]

a = R exp
(
− π

2ã

)
. (3)

Note that this definition implies that a ≥ 0. The tuning
of C0(Λ) then follows the procedures described in [3,20].
Assuming a hard-cutoff regulator in momentum space, the
coefficient is

C0(Λ) = − 2π

m log (aΛ)
. (4)

We note that though the interaction Eq. (2) is both cutoff
and scheme dependent by virtue of the coefficient in Eq. (4),
observables are not. We ultimately take the limit Λ → ∞ in
all our subsequent calculations.

2.2 The integral equation

Our task then is to solve the eigenvalue equation3

(
T̂1 + T̂2 + V̂12

)
|ψLM 〉 = E |ψLM 〉, (5)

where our eigenstates are states with good total angular
momentum L and M since our interaction preserves total
angular momentum. To do this, we first recast Eq. (5) into

3 The eigenvalue E includes both rotational and vibrational energies.
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integral form,

|ψLM 〉 = 1

E − T̂1 − T̂2
V̂12|ψLM 〉. (6)

We then project the eigenstate onto

〈(l1l2)LM | ≡
∑

m1,m2

〈l1,m1; l2,m2|LM〉〈l1,m1|〈l2,m2|,

where 〈l1,m1; l2,m2|LM〉 is a Clebsch–Gordan coefficient.
This gives

〈(l1l2)LM |ψLM 〉 = 1

E − εl1 − εl2

∑

l ′1l ′2

〈
(l1l2)LM |V̂12|(l ′1l ′2)LM

〉

× 〈
(l ′1l ′2)LM |ψLM

〉
.

(7)

On the RHS above we have inserted the closure relation
1̂ = ∑

l ′1l ′2 |(l ′1l ′2)LM〉〈(l ′1l ′2)LM | and used the fact that

|l1m1〉 and |l2m2〉 are eigenstates of T̂1 and T̂2, respectively,
with eigenenergies given in Eq. (1).

2.3 Quantization condition for general L

To continue further we require the explicit form of the matrix

element
〈
(l1l2)LM |V̂12|(l ′1l ′2)LM

〉
. As this derivation is quite

tedious, we leave it for the appendices (Appendix A) and only
provide the end result here:

〈
(l1l2)LM |V12|(l ′1l ′2)LM

〉

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

C0(Λ)

R2

√
ˆl1 ˆl2 ˆl ′1 ˆl ′2
4π

(
l1 l2 L

0 0 0

) (
l ′1 l ′2 L

0 0 0

)

,

if li (li + 1), l ′i (l ′i + 1) ≤ (ΛR)2

0, otherwise

, (8)

where

(
l1 l2 L
m1 m2 ML

)
is a Wigner 3- j symbol [10] and we

define l̂i ≡ 2li +1 for brevity. The condition that li (li +1) ≤
(ΛR)2 and l ′i (l ′i + 1) ≤ (ΛR)2 for i = 1, 2 comes from the
momentum hard cutoff condition of our interaction. We now
plug this expression into Eq. (7), giving

〈(l1l2)LM |ψLM 〉 = C0(Λ)

R2

√
l̂1l̂2

4π

(
l1 l2 L
0 0 0

)
1

E − εl1 − εl2

×
ΛR∑

l ′1l ′2

√
l̂ ′1l̂ ′2

(
l ′1 l ′2 L
0 0 0

)
〈
(l ′1l ′2)LM |ψLM

〉
.

(9)

The equality above holds for all li such that li (li + 1) ≤
(ΛR)2 for i = 1, 2. In particular, it holds if we multiply both

sides of the equation by
√
l̂1l̂2

(
l1 l2 L
0 0 0

)
and then sum

both sides over l1 and l2,

ΛR∑

l ′′1 ,l ′′2

√
ˆl ′′1 ˆl ′′2

(
l ′′1 l ′′2 L
0 0 0

)
〈(l ′′1 l ′′2 )LM |ψLM 〉

= C0(Λ)

4πR2

ΛR∑

l1,l2

l̂1l̂2
E − εl1 − εl2

×
(
l1 l2 L
0 0 0

)2 ΛR∑

l ′1l ′2

√
l̂ ′1l̂ ′2

(
l ′1 l ′2 L
0 0 0

) 〈
(l ′1l ′2)LM |ψLM

〉
.

(10)

On the LHS above we have introduced new summation
indices l ′′i (instead of li ) to stress that it is the sum that holds
under the equality. A trivial solution to the equality occurs
if 〈(l1l2)LM |ψLM 〉 = 0 for all li . To obtain a non-trivial
solution, we collect the components 〈(l1l2)LM |ψLM 〉 to one
side of the equation,

0 =
ΛR∑

l ′1l ′2

√
l̂ ′1l̂ ′2

(
l ′1 l ′2 L
0 0 0

) 〈
(l ′1l ′2)LM |ψLM

〉

×
⎡

⎣C0(Λ)

4πR2

ΛR∑

l1,l2

l̂1l̂2
E − εl1 − εl2

(
l1 l2 L
0 0 0

)2

− 1

⎤

⎦ .

(11)

The equality now holds non-trivially if the term in square
brackets vanishes. Using the exact form of C0(Λ) from
Eq. (4) and equating the term in square brackets to zero gives
the desired quantization condition for arbitrary total angular
momentum L:

log
( a

R

)
=

ΛR∑

l1,l2

(2l1 + 1)(2l2 + 1)

l1(l1 + 1) + l2(l2 + 1) − x

(
l1 l2 L
0 0 0

)2

− log(ΛR) , (12)

where x ≡ 2mER2. The summation above is over all li such
that li (li + 1) ≤ (ΛR)2.

The eigenvalues E , or equivalently x , of Eq. (5) are those
that satisfy the equality in Eq. (12). This represents Lüscher’s
formula on S2 for each rotational band L under the assump-
tion of a pure contact interaction.

2.4 Closed expressions for select L

When we concentrate on specific values of L and take the
limit Λ → ∞ we can further simplify Eq. (12) and obtain
closed expressions. We do this explicitly for L = 0 and 1, and
provide the closed expression for L = 2 without derivation.
In principle it is possible to obtain closed expressions for
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concrete values of L > 2, but the derivation becomes much
more tedious and onerous.

2.4.1 L = 0

To start, note that the sums over l1 and l2 in Eq. (12) are
restricted by the triangle inequalities of the Wigner 3- j sym-
bol

|l1 − l2| ≤ L ≤ l1 + l2 . (13)

For L = 0 this implies that l1 = l2 ≡ l. The 3- j symbol

simplifies to (−1)l√
2l+1

and Eq. (12) becomes

log
( a

R

)
= lim

Λ→∞

ΛR∑

l

2l + 1

2l(l + 1) − x
− log(ΛR) (14)

If we identify the cutoff with some maximum angular
momentum λ via λ(λ + 1) ≡ (ΛR)2, then our expression
above can be written as

log
( a

R

)
= lim

λ→∞

λ∑

l

2l + 1

2l(l + 1) − x
− 1

2
log(λ(λ + 1))

(15)

The sum can be explicitly expressed in terms of the digamma
function ψ(x) = d

dx log(
(x)),

λ∑

l

2l + 1

2l(l + 1) − x
= 1

2

(
ψ

(
λ − 1

2

√
2x + 1 + 3

2

)

+ψ

(
λ + 1

2

√
2x + 1 + 3

2

)
− ψ

(
1

2

(
1 − √

2x + 1
))

−ψ

(
1

2

(
1 + √

2x + 1
)) )

. (16)

In the limit λ → ∞ the first two terms on the RHS above
exactly cancel the logarithm term in Eq. (15) What remains
gives us our closed-form expression,

log
( a

R

)
= −1

2

[
ψ

(
1

2

(
1 − √

2x + 1
))

+ψ

(
1

2

(
1 + √

2x + 1
)) ]

≡ Z0(x) . (17)

2.4.2 L = 1

The triangle inequality in this case requires that, given l1 ≡ l,
the sum over l2 is restricted to the values |l − 1|, l, and
l + 1. However, the 3- j symbol vanishes for l1 = l2 = l

(when L = 1), and so Eq. (12) becomes the sum over two
expressions only,

log
( a

R

)
= 3

2 − x

(
0 1 1
0 0 0

)2

+
ΛR∑

l≥1

(
4l2 − 1

2l2 − x

(
l l − 1 1
0 0 0

)2

+ (2l + 1)(2l + 3)

2(l + 1)2 − x

(
l l + 1 1
0 0 0

)2 )
− log(ΛR) .

(18)

The first term on the RHS above comes from the l = 0
contribution. After simplifying the 3- j symbols the sums can
be performed and analytically expressed in terms of digamma
functions. The Λ → ∞ limit can be subsequently taken,
giving

log
( a

R

)
= −1

2

[
ψ

(
1 −

√
x

2

)
+ ψ

(
1 +

√
x

2

)]

≡ Z1(x) . (19)

The fact that there exists a non-trivial quantization condi-
tion for L = 1, despite the interaction being a pure contact
interaction, comes from the fact that our general expression
in Eq. (12) is derived using single-particle coordinates as
opposed to relative coordinates.

2.4.3 L = 2

The steps used for the L = 0, 1 cases can be analogously
applied to L = 2 (and higher). Clearly the sum over l2 for
a given l1 becomes more involved as L becomes larger, and
as such, the expressions become more complicated and cum-
bersome to express. Therefore we do not show these steps
here but instead provide the expression for L = 2 without
derivation:

log
( a

R

)
= 1

12 − 8x

[
2 + 3(x − 2)

{
ψ

(
1

2

(
3 − √−3 + 2x

))

+ ψ

(
1

2

(
3 + √−3 + 2x

)) }
+ x

{
ψ

(
1

2

(
1 − √

1 + 2x
))

+ ψ

(
1

2

(
1 + √

1 + 2x
)) }]

≡ Z2(x) . (20)

2.5 Limits and zeros of the quantization relations for
L = 0, 1 cases

The structure of these quantization equations for energies
x ∈ {−9, 40} is displayed in Fig. 2. These will be utilized to
find solutions to the Schrödinger equation for two particles
on a sphere in the following chapter. One may notice the
divergent parts of each graph, which corresponds to the case
of no interaction.
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Fig. 2 Quantization curves for the three lowest angular momenta L
given by Eqs. (17), (19), and (20). The vertical dashed lines correspond
to the non-interacting energies. The horizontal red line is the experi-

mentally determined value of − π
2ã in the spin-singlet (S = 0) case,

while the blue line corresponds to the spin-triplet (S = 1) case, both of
which are described and used in Sect. 3

As already mentioned earlier, in two dimensions the scat-
tering length a ≥ 0 [27]. In the limit a � R, the solu-
tions to Eq. (17) approach the non-interacting energies from
below. In the limit a 
 R we have, in addition to the deeply
bound solution x → −∞ (i.e. the so-called “dimer solu-
tion"), solutions that also approach the non-interacting ener-
gies, but now from above. We can expand the solutions x
about the non-interacting energies by considering the limit
| log(a/R)| � 1. For the nth solution, where n ∈ Z≥0, we
find for the L = 0 case

x = 2n(n + 1) − 2n + 1

log(a/R)
+ O

(
log(a/R)−2

)
. (21)

This expression is valid for both limits a → ∞ and a → 0
(keeping R fixed). The bound dimer solution valid as a → 0
scales as

x = −2R2

a2 + O(a2) . (22)

Given that x = 2mER2, this corresponds to the standard
dimer binding energy E = − 1

ma2 . Similarly, for L = 1 we
have

x = 2(n + 1)2 − 2(n + 1)

log(a/R)
+ O

(
log(a/R)−2

)
, (23)

which is again valid for both limits a → ∞ and a → 0
while keeping R fixed. The dimer solution scales identically
the same as the L = 0 case, Eq. (22).

Another interesting limit is to consider the case when
a/R = 1, corresponding to the |ã| → ∞ limit.4 Solutions
to Eq. (12) in this case occur when the curves in Fig. 2 inter-
sect the x-axis, corresponding to zeros of the quantization
equations. We provide these zeros to machine precision for
L = 0, 1, and 2 in Table 1. For both L = 0 and L = 1 there
exists an x0 < 0 solution corresponding to a bound state in
this limit.

The behavior of the eigenvalue solutions near a general
zero x0 when a ≈ R for the L = 0 band is

x = x0 + 4
√

2x0 + 1 log (a/R)

ψ(1)
( 1

2 − 1
2

√
2x0 + 1

) − ψ(1)
( 1

2 + 1
2

√
2x0 + 1

)

+O
(

log(a/R)2
)

, (24)

while for L = 1 it is

x = x0 + 4
√

2x0 log (a/R)

ψ(1)
(

1 −
√

x0
2

)
− ψ(1)

(
1 +

√
x0
2

)

+O
(

log(a/R)2
)

, (25)

4 If both a → ∞ and R → ∞, while a/R = 1, then this corresponds
to the 2-d unitary limit where all length scales have been “integrated
out”.
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Table 1 Zeros x0 for the three lowest rotational bands

L = 0 L = 1 L = 2

−2.69519416311127(1) −1.56227783993538(1) 0.57785048142503(1)

1.53660948605491(1) 5.02284537252901(1) 4.86959138770876(1)

8.70562260382481(1) 14.32769206430169(1) 12.76394742135846(1)

20.02549569293160(1) 27.69206196072471(1) 21.24994781781113(1)

.

.

.
.
.
.

.

.

.

−6 −4 −2 0
x

−2

−1

0

1

2

Z
0(

x
)

L = 0

Fig. 3 The limits of the quantization equation for the L = 0 case. The
red dashed curve corresponds to Eq. (22), the blue dashed line Eq. (21),
and the green dashed curve Eq. (24) using x0 = −2.69519. The solid
black line is given by Eq. (17)

where ψ(1)(z) ≡ d
dzψ(z). In Fig. 3 we plot these limiting

expressions and compare them to the exact solution for the
L = 0 case.

2.6 Comparison with S1 × S1 topology and 2-D harmonic
oscillator

As mentioned earlier, the quantization condition for two par-
ticles interacting in a confined space has been determined in
other 2-D systems. Here we take the opportunity to compare
our L = 0 result Eq. (17) with its analog in the S1 × S1

geometry and the harmonic oscillator.
Busch et al. [6] have derived the case for the 2-D harmonic

oscillator with frequency ω,

log
(a
b

)
= −1

2
ψ

(
1

2
− x

2

)
, (26)

where x = E/ω with E the eigenenergy and b = 1/
√

2mω

is the oscillator parameter.
For a 2-D square lattice of side L with periodic boundary

conditions (i.e. the torus or S1 × S1 topology), a thorough
derivation is provided in [3], giving

2

π
log

(
2π

a

L

)
= lim

Λ→∞
1

π2

|n|≤Λ∑

n

1

n2 − x
− 2

π
log (Λ)

≡ 1

π2 S2(x) . (27)

Here S2(x) is the two dimensional zeta function, n =
(ni , n j ) ∈ Z

2, and x = mEL2/(4π2).
The dependence of these functions on x is shown Fig. 4,

and should be compared with the top panel of Fig. 2. In all
cases, the curves approach their respective non-interacting
solutions in both limits a → ∞ and a → 0, all other param-
eters held fixed. Furthermore, all cases have x0 < 0 as the
lowest x-axis intercept, corresponding to a bound state in the
limit a/R = a/b = 2πa/L = 1.

Because the harmonic oscillator and torus results are
derived in geometries in which the CM and relative coor-
dinates are exactly separable, it is trivial to determine
their quantization conditions for non-zero CM motion. Such
motion corresponds to a quantized CM energy ECM , which
in dimensionless units is xCM = ECM/ω for the harmonic
oscillator and xCM = mECML2/(4π2) for the torus. To
obtain the quantization curves for these cases, one shifts the
curves in Fig. 4 to the right by exactly xCM . In this manner
any non-zero CM quantization curve in the harmonic oscil-
lator and torus cases can be obtained directly from the curves
shown in Fig. 4.

For S2 there is no trivial connection to the lowest energy
quantization curve given by L = 0, since the geometry is
not amenable to CM and relative motion separability. The
analog of different CM motion manifests itself as different
rotational bands L , and as can be seen from Fig. 2 the L = 1
and L = 2 curves (and in general L > 2) are not connected
to L = 0 by any constant shift in the x-axis.

3 Application: predicting energy levels of two-nucleon
halo nuclei

Halo nuclei consist of a tightly bound core of nucleons sur-
rounded by a small group of loosely bound, or halo, nucle-
ons. The resulting nuclei appear much larger than the radius
of the original tightly bound core. A classic example is the
11Li halo nucleus originally found by Tanihata et al. [30].
This nucleus can be decomposed into a three-body system,
9Li + 2n, where the 9Li constitutes the tightly bound core
and the two neutrons the halo nucleons that are considered to
be loosely bound and interacting. Another example is 6He,
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Fig. 4 S-wave quantization conditions for the 2-D harmonic oscillator (left, Eq. (26)) and the S1 × S1 topology (right, Eq. (27)). The vertical
dashed gray lines correspond to the non-interacting energies of each system. Compare with the L = 0 quantization relation on S2 (top panel of
Fig. 2 and Eq. (17))

which can also be decomposed into a tightly bound core,
4He, plus two halo neutrons, again loosely bound and inter-
acting. Both of these systems are only stable5 as a three-body
constellation, and therefore are considered borromean [32].

A simple, albeit crude, approximation to these systems is
to assume that the two nucleons are constrained to interact
on a sphere with halo radius R and that the core is located
at the center of this sphere. The confinement of the halo
nucleons is assumed to be due to some non-trivial interac-
tion with the core, which we approximate as infinitely mas-
sive and therefore non-dynamical.6 When the core has its
own angular quantum numbers, we may couple the angular
momentum of the halo nucleons with that of its core, but
aside from that, the core has no other influence on the halo
nucleons. If we further assume that the interaction between
the nucleons is contact in nature,7 then our formalism of the
previous section directly describes this situation.8 Under this
approximation radial excitations are not possible and there-
fore there are only vibrational excitations for each rotational
band. Thus our model cannot capture all relevant dynamics
of halo nuclei, since they will have both radial and vibrational
modes.

Nucleons are of course fermions with spin and isospin
equal to 1/2. To incorporate our results from the previous
section, we must take the nucleons’ spins, isospins, and
their Pauli-exclusion into account. For the two nucleons to
‘feel’ the s-wave interaction, we must couple their spins and

5 Stable in this context applies only to the strong interaction.
6 Such an approximation has been used to describe doubly-excited
atomic electrons interacting via a contact interaction [11,12] and via
a modified coulomb interaction [28], for example.
7 Such an approximation is only valid at energies well below the pion
mass [15].
8 Naturally there exist more sophisticated models and calculations of
these systems, see e.g. Refs. [7,14,17] and references within.

isospins to total spin and isospin S = 0, T = 1 (e.g. ‘spin-
singlet’ two-neutron system) or S = 1, T = 0 (i.e. ‘spin-
triplet’ deuteron system), respectively. We then couple their
total spin S and angular momentum L to make total angular
momentum JNN. An anti-symmetric two-nucleon wavefunc-
tion requires

L + S + T − l1 − l2 = odd ,

and this in turn restricts the allowed angular momentum L of
the two nucleons. The total angular momentum JNN of the
halo nucleons is then coupled with the angular momentum
of the core to obtain the total angular momentum of the halo
system J . Finally, the parity of the two-nucleon system is
(−1)L , and is multiplied with the parity of the core to obtain
the overall parity π of the halo system.

Before we can use our formalism to predict energy levels,
however, we have to tune the parameters (i.e. ã or equiva-
lentlya/R) of our theory. Such tuning is a common procedure
in any low-energy effective theory, and in what follows we
describe in detail how we use the low-energy spectrum of the
6He and 11Li halo nuclei to determine these parameters. In
particular, these systems will allow us to determine the spin-
singlet scattering length ã0. We also consider the 6Li system
which will allow us to determine the spin-triplet scattering
length ã1.

3.1 Helium-6

Here we have two neutrons surrounding a 4He core. The two
neutrons are thus in the S = 0, T = 1 channel. The three low-
est allowed angular momentum bands are L = 0, L = 1, and
L = 2, with L = 1 being odd in parity and the others even.
As the 4He core has JπC

C = 0+ angular momentum, the total
angular momenta of the halo nucleus for these bands are sim-
ply Jπ = Jπ

NN = 0+, 1−, and 2+. Within our approximation
the interaction of two neutrons on a 2d surface is described
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solely by the parameter ã0, where we add the subscript 0
to denote that this parameter is for the spin-singlet S = 0
system. This parameter is independent of the halo nucleus.
As it is also dimensionless, a single empirical (dimensionful)
energy is not sufficient to constrain this parameter and there-
fore a second energy is required. We use the experimental
Jπ = 0+ and 2+ energies of the 6He halo nucleus [13,31],
measured relative to the 4He + n + n threshold, to constrain
the dimensionful parameters a0 and R of our theory, which
we stress are halo nucleus dependent. We then obtain ã0 by
the relation Eq. (3). We find

ã0 = −5.58(6) . (28)

The experimental energies used to obtain this value, as well as
the resulting a0, R, and predicted energy levels of our model
for the Jπ = 0+, 1− and 2+ rotational bands, are given in
Fig. 5. We take the mass of the neutron as m = 939.565
MeV.

To obtain the errors of the fit parameters quoted in Fig. 5,
we first assume that the experimental errors for the J = 0
and J = 2 energies are uncorrelated and follow a normal
distribution with width dictated by their respective errors.
We then sample these energies from their distributions, each
time performing our fit to obtain a0, R, and ã0, and we tally
these results. The mean of these tallies is our quoted values of
these terms in Fig. 5, and the standard deviation their errors.
Our sample size is 10,000.

The determined value of ã0 then fixes log (a0/R) through
the relation Eq. (3), which we show as the red line in the
L = 0, 1 and 2 plots in Fig. 2. The intercept of this red line
with the solid black curves in these plots gives us our energy
solutions. Our fitting procedure is guaranteed to reproduce
the lowest 0+ and 2+ experimental energies and their errors,
as these were used to obtain our fit parameters. The higher
intercepts then provide our predicted energy levels shown in
Fig. 5.

As already mentioned above, the applicability of our
model is quite limited due to its extreme simplicity, and this
is quite obvious when looking at its predicted Jπ = 1− ener-
gies. Our model predicts as its lowest state a negative energy
solution, although experimentally no such state exists. Fur-
thermore, there exist positive energy solutions that are pre-
dicted in other rotational bands that have no obvious exper-
imental counterparts. It is also interesting to compare our
estimate of the halo radius R = 6.258(15) fm which is
nearly a factor of two larger than the experimental result
of Rexp = 3.08(10) fm [9]. Again, this disagreement is not
surprising given the level of crudeness of our model.

3.2 Lithium-11

The 9Li core has angular quantum numbers 3/2−, and for
the 11Li halo system there is only the measured J = 3/2−

ground state energy E0 = −0.369MeV [18,29] that has
definitive quantum numbers assigned. However, given that
we determined ã0 in the previous section (which in our
approximation is independent of halo nucleus), we have suf-
ficient information to determine a0 and R for this system.
In this case we tally fit results obtained from uncorrelated
samplings of E0 and ã0 to arrive at a0 and R, and then sub-
sequently predict the higher energy levels. Our results are
given in the right panel of Fig. 5. When coupling the angular
momentum JNN of the halo nucleons with that of the 3/2−
core, our model predicts multiplets of energies in the L = 1
and L = 2 cases. We label these multiplets in our figure.

As in the 6He case, our model predicts another nega-
tive energy solution near threshold coming from the L = 1
case, which is not seen experimentally. Our model again pre-
dicts many positive energy solutions that have no obvious
experimental counterparts. Our estimate of the halo radius
R = 10.154(24)fm deviates from its experimental value,
Rexp = 6.5(3)fm [9]. Again, this level of disagreement is
not surprising given the simplicity of our model.

3.3 Lithium-6

Though not technically considered a halo nucleus, the small
separation energy for 4He+n+p breakup (small compared to
the binding energy of its 4He core) suggests that the nucleus
is extended in size. We therefore assume that the 4He acts as
the core and the ‘halo’ nucleons for this system consist of a
neutron and proton. This system supports both S = 0, T = 1
and S = 1, T = 0 channels, therefore we expect the spec-
trum to be much richer than in the previous two examples.
Both of these channels can couple to L = 0 and 2 angular
momenta for positive parity. The S = 0, T = 1 channel can
also couple with the negative parity L = 1 angular momen-
tum. When coupled with JπC

C = 0+ of the core, we have
Jπ (T ) = 1+(0), 2+(0), 3+(0), 0+(1), 2+(1), and 1−(1)

as possible quantum numbers. We use m = 2μ = 938.918
MeV, where μ is the reduced mass of the proton and neutron.

We assume isospin charge symmetry, meaning that the
(dimensionless) scattering length in the spin-singlet S = 0
channel is the same as that determined in the 6He case given
in Eq. (28). To determine the spin-triplet S = 1 scattering
length, we again use the two lowest experimental energies
[31] of this system, measured relative to the 4He + n + p
breakup threshold. Here the two lowest energies have the
quantum numbers 1+ and 3+ states. We find

ã1 = 3.760(7) , (29)

where the subscript 1 denotes the S = 1 spin-triplet system.
Note the change of the sign compared to the spin-singlet case
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Fig. 5 Two-neutron halo energy levels for select rotational bands of
6He (left) and 11Li (right), compared to experiment. The lowest two
experimental energies of 6He and the lowest experimental energy of
11Li were used to determine ã0 and our model parameters shown in the
boxed insets. These were then used to make the predictions of the energy

levels. Where possible we have provided the Jπ quantum numbers of
the levels, and color-coded the levels to match the quantum numbers.
The uncertainties do not represent widths of the levels, but rather are
the uncertainties of our model predictions, given the level of accuracy
of the experiments

in Eq. (28).9 As before, the determined value of ã1, along with
the experimental energies, fixes log (a1/R) through the rela-
tion Eq. (3). We show this result as the blue line in the L = 0
and 2 plots in Fig. 2. The intersection of this blue line with
the black curves gives us our predicted energy levels. The
experimental energies, our determined a0, a1 and R param-
eters for this system, as well as our predicted energy levels
are shown in Fig. 6.

It is interesting to note that relative to the 4He + n + p
breakup threshold, the 6Li system has three positive parity
negative energy states. The two lowest energies, both in the
T = 0 channel, are exactly captured in our model, since we
use these energies to fit our parameters ã1 and the combina-
tion a1 and R. But our model also predicts a third positive
parity negative energy corresponding to the T = 1 chan-
nel. This is due to the spin-singlet scattering length ã0 and
the energy of this state coincides with the intersection of the

9 A similar sign change occurs for the two-nucleon scattering lengths
in three dimensions.

red line with the lowest black curve of L = 0 in Fig. 2. The
correct ordering of these levels is captured in our model, how-
ever the experimental value of this state is much closer to the
4He + n + p threshold, while our prediction is significantly
lower in energy. Lastly, our model predicts a near thresh-
old negative energy in the negative parity Jπ (T ) = 1−(1)

band due to the coupling with L = 1, which is not observed
experimentally.

4 Conclusion

In this paper we derived the quantization condition for two-
particles constrained to a sphere, or S2, and under the assump-
tion that they interact via a contact interaction. We show how
the energy levels of the system are related to the reduced
scattering length a and radius of the sphere R. As the con-
straint on S2 represents a non-inertial frame, the system is
not amenable to a separation of CM and relative coordinates.
As such, there is an infinite tower of solutions for each total
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widths of the levels, but rather
are the uncertainties of our
model predictions
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angular momentum L , each of which is different and not
related by any constant offset from each other. We provide
a solution for any L in terms of a general sum, but for the
L = 0, 1, and 2 cases we obtain closed form expressions.
We also derive expressions in the limit a � R, a 
 R, and
a → R.

We then applied our formalism to select two-nucleon halo
nuclei under the assumption that the halo nucleons are con-
fined to a sphere of halo radius R and the core is infinitely
massive and therefore non-dynamical. We tuned our system-
dependent parameters to the low-lying spectrum of these halo
nuclei and determined the spin-singlet S = 0 and spin-triplet
S = 1 scattering lengths. We then used these results to pre-
dict the higher-lying spectrum. Our results for the halo radius
disagreed by up to a factor of two from experiment, but given
the level of crudeness of our approximation this was not a
surprising result. Despite such disagreements, our applica-
tion to halo nuclei provides an example of how one tunes
the parameters of an effective theory using empirical data,
while at the same time demonstrating the limitations of our
particular theory.

One might consider improving our formalism by expand-
ing beyond a simple contact interaction to include derivative,
or momentum-dependent contact terms, similar to what was
done, for example, in [2]. Here the ‘curvature’ of the surface

may complicate such an investigation, but to what degree is
unknown.

Finally, our formalism and its application to two-nucleon
halo nuclei, provides another excellent pedagogical example
of two quantum mechanical interacting particles, but this time
within a non-inertial frame.
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A Derivation of
〈
(l1l2)LM|V̂12|(l ′1l ′2)LM

〉

In Eq. (8) we stated the result of the matrix element
〈
(l1l2)LM |V̂12|(l ′1l ′2)LM

〉

which we will now go over in more detail. We start by insert-
ing two complete sets of position eigenstates in order to eval-
uate the potential V̂12 in coordinate space and furthermore
make use spherical harmonics.

〈l1m1; l2m2|V̂12|λ1μ1; λ2μ2〉
= C0(Λ)

R2

∫
d r̂1d r̂2〈l1m1; l2m2|r̂1; r̂2〉δ

(
r̂1 − r̂2

)

×〈r̂1; r̂2|λ1μ1; λ2μ2〉
= C0(Λ)

R2

∫
d r̂1Y

∗
l1m1

(r̂1)Y
∗
l2m2

(r̂1)Yλ1μ1
(r̂1)Yλ2μ2

(r̂1) .

(30)

Usage of straightforward spherical harmonics algebra leads
to the following expression:
∫

d r̂ Y ∗
l1m1

(r̂)Y ∗
l2m2

(r̂)Yλ1μ1
(r̂)Yλ2μ2

(r̂)

=
√

(2l1 + 1)(2l2 + 1))(2λ1 + 1)(2λ2 + 1)

4π

×
∑

LM

(2L + 1)

(
l1 l2 L

−m1 −m2 M

)(
L λ1 λ2

−M μ1 μ2

)

×
(
l1 l2 L
0 0 0

)(
L λ1 λ2

0 0 0

)

≡ Y4(l1,m1, l2,m2, λ1, μ1, λ2, μ2) . (31)

The triangle inequalities of the 3 j−symbols provide the
following constraints:

m1 + m2 = M = μ1 + μ2

max(|l1 − l2|, |λ1 − λ2|)
≤L ≤ min(l1 + l2, λ1 + λ2) .

Note that the sum over L , M in the 3 j-symbols in Eq. (31)
does not allow a factorisation of terms between l1,m1, l2,m2

and λ1, μ1, λ2, μ2. To condense our expression a little we
will use the abbreviation x̂ ≡ 2x + 1 to end up with

YLM (l1, l2, l
′
1, l

′
2) = 〈(l1l2)LM |Y4|(l ′1l ′2)LM〉

=
∑

m1,m2

m′
1,m

′
2

〈l1m1; l2m2|LM〉Y4

(l1,m1, l2,m2, l
′
1,m

′
1, l

′
2,m

′
2)〈l ′1m′

1; l ′2m′
2|LM〉

= 1

4π

√
l̂1l̂2l̂ ′1l̂ ′2

∑

LM

L̂

(
l1 l2 L
0 0 0

) (
l ′1 l ′2 L
0 0 0

)

∑

m1m2

〈l1m1; l2m2|LM〉
(

l1 l2 L
−m1 −m2 M

)

∑

m′
1m

′
2

〈l ′1m′
1; l ′2m′

2|LM〉
(
l ′1 l ′2 L
m′

1 m′
2 −M

)
. (32)

We substituted Y4(l1,m1, l2,m2, l ′1,m′
1, l

′
2,m

′
2) with

Eq. (31) (and used the invariance of the 3 j-symbols under
cyclic permutation of indices). We further express the 3 j-
symbols using Clebsch–Gordan coefficients,

(
l1 l2 L

−m1 −m2 M

)
= (−1)l1−l2−M

√
L̂

〈l1,−m1; l2,−m2|L ,M 〉,
(33)

(
l ′1 l ′2 L

m′
1 m′

2 −M

)
= (−1)l

′
1−l ′2+M

√
L̂

〈l ′1,m′
1; l ′2,m′

2|L ,−M 〉.
(34)

Summing over the magnetic quantum numbers m′
1 and m2

and applying the orthogonality of Clebsch–Gordan coeffi-
cients, the sum collapses to two Kronecker Deltas,

∑

m′
1m

′
2

〈l ′1m′
1; l ′2m′

2|LM〉〈l ′1,m′
1; l ′2,m′

2|L ,−M 〉

= δL ,L δM,−M . (35)

Equation (32) therefore becomes

YLM (l1, l2, l
′
1, l

′
2) = (−1)l1−l2+l ′1−l ′2 1

4π

√
l̂1l̂2l̂ ′1l̂ ′2

×
(
l1 l2 L
0 0 0

) (
l ′1 l ′2 L
0 0 0

)

×
∑

m1m2

〈l1m1; l2m2|LM〉

〈l1,−m1; l2,−m2|L ,−M〉 (36)

Now we use the property

〈l1,−m1; l2,−m2|L ,−M〉
= (−1)l1−l2−L〈l1,m1; l2,m2|L , M〉,

and the remaining sums over m1 and m2 give unity, leading
to the final expression

YLM (l1, l2, l
′
1, l

′
2) = (−1)l

′
1−l ′2−L 1

4π

√
l̂1l̂2l̂ ′1l̂ ′2

(
l1 l2 L
0 0 0

) (
l ′1 l ′2 L
0 0 0

)
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= 1

4π

√
l̂1l̂2l̂ ′1l̂ ′2

(
l1 l2 L
0 0 0

) (
l ′1 l ′2 L
0 0 0

)
,

(37)

where we used the fact that for non-vanishing 3 j coefficient, l ′1 +
l ′2 + L = must be even, which implies that the factor

(−1)l
′
1−l ′2−L = 1. (38)

Inserting this result in Eq. (30) leaves us with the final
form of the matrix element,

〈(l1l2)LM |V̂12|(l ′1l ′2)LM〉 = C(Λ)

R2

∑

m1,m2

m′
1,m

′
2

〈l1m1; l2m2|LM〉

×Y4(l1,m1, l2,m2, l
′
1,m

′
1, l

′
2,m

′
2)

× 〈l ′1m′
1; l ′2m′

2|LM〉
≡ C(Λ)

R2 YLM (l1, l2, l
′
1, l

′
2). (39)

Note that the sums are restricted such that m1 +m2 = M =
m′

1 +m′
2. The matrix element YLM (l1, l2, l ′1, l ′2) can be ana-

lytically determined and is separable,

YLM (l1, l2, l ′1, l ′2) = 1

4π

[√
(2l1 + 1)(2l2 + 1)

(
l1 l2 L
0 0 0

)]

×
[√

(2l ′1 + 1)(2l ′2 + 1)

(
l ′1 l ′2 L
0 0 0

)]

(40)

This last relation, combined with Eq. (39), gives the stated
result in Eq. (8).
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