001019527 001__ 1019527
001019527 005__ 20240712113123.0
001019527 037__ $$aFZJ-2023-05474
001019527 082__ $$a530
001019527 1001_ $$0P:(DE-HGF)0$$aKorshunov, Aleksandr$$b0
001019527 245__ $$aAn oxo-verdazyl radical for a symmetrical nonaqueous redox flow battery
001019527 260__ $$aLondon [u.a.]$$bRSC$$c2020
001019527 3367_ $$2DRIVER$$aarticle
001019527 3367_ $$2DataCite$$aOutput Types/Journal article
001019527 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1705398251_30837
001019527 3367_ $$2BibTeX$$aARTICLE
001019527 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001019527 3367_ $$00$$2EndNote$$aJournal Article
001019527 520__ $$aVerdazyl free radical compounds are promising candidates for symmetrical all-organic redox flow batteries(RFBs) due to their redox stability, the ease with which their chemical structure can be varied, and theirunique bipolar nature. The present work reports a preliminary screening of a selection of oxo-verdazylcompounds for key redox electrolyte parameters. Of the considered candidates, the 1,5-diphenyl-3-isopropyl-6-oxo-verdazyl radical performed best and is investigated in extensive RFB experiments tocompare its electrochemical behavior in cyclic voltammetry (CV) to that within an actual battery. Thesymmetrical oxo-verdazyl non-aqueous electrolyte RFB provides a mean voltage of 1.42 V anddemonstrates good stability as well as high coulombic (>97%) and energy efficiencies over more than100 charge/discharge cycles. The redox electrolyte is characterized at different stages within a singlecycle (‘state of charge’ experiments) independently for each half-cell. To address the specifics of theelectrolyte transition to RFB cell setup an ‘in-cell’ CV flow-enabled electrochemical study has beenconducted, introduced here as a new step towards standardization of the electrochemical description ofRFB electrolytes. The electrochemical performance results highlight oxo-verdazyls as versatile materialsfor energy applications and indicate great promise for their further development and optimization in thefield of RFBs.
001019527 536__ $$0G:(DE-HGF)POF4-1221$$a1221 - Fundamentals and Materials (POF4-122)$$cPOF4-122$$fPOF IV$$x0
001019527 536__ $$0G:(GEPRIS)159705466$$aSFB 858 B11 - Kooperativität in organischen spintragenden Materialien und ihren Hybridsystemen: Steuerung magnetischer Eigenschaften durch Orientierung von Radikalen (B11) (159705466)$$c159705466$$x1
001019527 7001_ $$0P:(DE-HGF)0$$aMilner, Matthew James$$b1
001019527 7001_ $$0P:(DE-Juel1)166392$$aGrünebaum, Mariano$$b2$$ufzj
001019527 7001_ $$0P:(DE-HGF)0$$aStuder, Armido$$b3
001019527 7001_ $$0P:(DE-Juel1)166130$$aWinter, Martin$$b4$$eCorresponding author$$ufzj
001019527 7001_ $$0P:(DE-Juel1)171204$$aCekic-Laskovic, Isidora$$b5$$eCorresponding author$$ufzj
001019527 773__ $$0PERI:(DE-600)2702232-8$$p22280–22291$$tJournal of materials chemistry / A$$v8$$x2050-7488$$y2020
001019527 8564_ $$uhttps://juser.fz-juelich.de/record/1019527/files/Manuscript%20JMC%20A.docx$$yRestricted
001019527 909CO $$ooai:juser.fz-juelich.de:1019527$$pVDB
001019527 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)166392$$aForschungszentrum Jülich$$b2$$kFZJ
001019527 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)166130$$aForschungszentrum Jülich$$b4$$kFZJ
001019527 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)171204$$aForschungszentrum Jülich$$b5$$kFZJ
001019527 9131_ $$0G:(DE-HGF)POF4-122$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1221$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vElektrochemische Energiespeicherung$$x0
001019527 915__ $$0StatID:(DE-HGF)0430$$2StatID$$aNational-Konsortium$$d2023-08-23$$wger
001019527 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2023-08-23
001019527 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2023-08-23
001019527 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2023-08-23
001019527 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2023-08-23
001019527 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2023-08-23
001019527 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2023-08-23
001019527 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2023-08-23
001019527 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ MATER CHEM A : 2022$$d2023-08-23
001019527 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-08-23
001019527 915__ $$0StatID:(DE-HGF)9910$$2StatID$$aIF >= 10$$bJ MATER CHEM A : 2022$$d2023-08-23
001019527 920__ $$lyes
001019527 9201_ $$0I:(DE-Juel1)IEK-12-20141217$$kIEK-12$$lHelmholtz-Institut Münster Ionenleiter für Energiespeicher$$x0
001019527 980__ $$ajournal
001019527 980__ $$aVDB
001019527 980__ $$aI:(DE-Juel1)IEK-12-20141217
001019527 980__ $$aUNRESTRICTED
001019527 981__ $$aI:(DE-Juel1)IMD-4-20141217