001     1019527
005     20240712113123.0
037 _ _ |a FZJ-2023-05474
082 _ _ |a 530
100 1 _ |a Korshunov, Aleksandr
|0 P:(DE-HGF)0
|b 0
245 _ _ |a An oxo-verdazyl radical for a symmetrical nonaqueous redox flow battery
260 _ _ |a London ˜[u.a.]œ
|c 2020
|b RSC
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1705398251_30837
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Verdazyl free radical compounds are promising candidates for symmetrical all-organic redox flow batteries(RFBs) due to their redox stability, the ease with which their chemical structure can be varied, and theirunique bipolar nature. The present work reports a preliminary screening of a selection of oxo-verdazylcompounds for key redox electrolyte parameters. Of the considered candidates, the 1,5-diphenyl-3-isopropyl-6-oxo-verdazyl radical performed best and is investigated in extensive RFB experiments tocompare its electrochemical behavior in cyclic voltammetry (CV) to that within an actual battery. Thesymmetrical oxo-verdazyl non-aqueous electrolyte RFB provides a mean voltage of 1.42 V anddemonstrates good stability as well as high coulombic (>97%) and energy efficiencies over more than100 charge/discharge cycles. The redox electrolyte is characterized at different stages within a singlecycle (‘state of charge’ experiments) independently for each half-cell. To address the specifics of theelectrolyte transition to RFB cell setup an ‘in-cell’ CV flow-enabled electrochemical study has beenconducted, introduced here as a new step towards standardization of the electrochemical description ofRFB electrolytes. The electrochemical performance results highlight oxo-verdazyls as versatile materialsfor energy applications and indicate great promise for their further development and optimization in thefield of RFBs.
536 _ _ |a 1221 - Fundamentals and Materials (POF4-122)
|0 G:(DE-HGF)POF4-1221
|c POF4-122
|f POF IV
|x 0
536 _ _ |a SFB 858 B11 - Kooperativität in organischen spintragenden Materialien und ihren Hybridsystemen: Steuerung magnetischer Eigenschaften durch Orientierung von Radikalen (B11) (159705466)
|0 G:(GEPRIS)159705466
|c 159705466
|x 1
700 1 _ |a Milner, Matthew James
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Grünebaum, Mariano
|0 P:(DE-Juel1)166392
|b 2
|u fzj
700 1 _ |a Studer, Armido
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Winter, Martin
|0 P:(DE-Juel1)166130
|b 4
|e Corresponding author
|u fzj
700 1 _ |a Cekic-Laskovic, Isidora
|0 P:(DE-Juel1)171204
|b 5
|e Corresponding author
|u fzj
773 _ _ |0 PERI:(DE-600)2702232-8
|p 22280–22291
|t Journal of materials chemistry / A
|v 8
|y 2020
|x 2050-7488
856 4 _ |u https://juser.fz-juelich.de/record/1019527/files/Manuscript%20JMC%20A.docx
|y Restricted
909 C O |p VDB
|o oai:juser.fz-juelich.de:1019527
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)166392
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)166130
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)171204
913 1 _ |a DE-HGF
|b Forschungsbereich Energie
|l Materialien und Technologien für die Energiewende (MTET)
|1 G:(DE-HGF)POF4-120
|0 G:(DE-HGF)POF4-122
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-100
|4 G:(DE-HGF)POF
|v Elektrochemische Energiespeicherung
|9 G:(DE-HGF)POF4-1221
|x 0
915 _ _ |a National-Konsortium
|0 StatID:(DE-HGF)0430
|2 StatID
|d 2023-08-23
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2023-08-23
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2023-08-23
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2023-08-23
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2023-08-23
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2023-08-23
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
|d 2023-08-23
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2023-08-23
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b J MATER CHEM A : 2022
|d 2023-08-23
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2023-08-23
915 _ _ |a IF >= 10
|0 StatID:(DE-HGF)9910
|2 StatID
|b J MATER CHEM A : 2022
|d 2023-08-23
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-12-20141217
|k IEK-12
|l Helmholtz-Institut Münster Ionenleiter für Energiespeicher
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IEK-12-20141217
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IMD-4-20141217


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21