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Abstract

A modern Fortran implementation of three Dirac operators (Wilson, Brillouin, Susskind)
in lattice QCD is presented, based on OpenMP shared-memory parallelization and SIMD
pragmas. The main idea is to apply a Dirac operator to N, vectors simultaneously, to ease
the memory bandwidth bottleneck. All index computations are left to the compiler and
maximum weight is given to portability and flexibility. The lattice volume, N, Ny N, Ny,
the number of colors, N, and the number of right-hand sides, N,, are parameters defined
at compile time. Several memory layout options are compared. The code performs well on
modern many-core architectures (480 Gflop/s, 830 Gflop/s, and 780 Gflop/s with N,, = 12
for the three operators in single precision on a 72-core KNL processor, a 2 x 24-core Skylake
node yields similar results). Explicit run-time tests with CG/BiCGstab inverters confirm
that the memory layout is relevant for the KNL, but less so for the Skylake architecture.
The ancillary code distribution contains all routines, including the single, double, and
mixed precision Krylov space solvers, to render it self-contained and ready-to-use.

1 Introduction

An ideal lattice QCD code is short, easy to read (hence to enhance/modify), and compiles in a
fully portable manner into a fast-performing executable. Such codes are hard to find, as these
requirements tend to be in conflict with each other. But there are means and ways to mitigate
the conflict, and this article reports on a specific effort in this direction.

Lattice QCD is the regulated theory of quarks and gluons |[1H3]. While a significant amount
of quantum field theory knowledge goes into its formulation, the actual computational problem
is easy to describe. It is about frequently solving large linear systemsﬂ

Du=15b (1)

for u, with a given vector b and a given Dirac matrix D (which is sparse and badly conditioned).
In this sense lattice QCD is a rather typical subfield of computational physics, except that D

'Here “frequently” means O(10°) times, “large” implies a n x n matrix with n = 402653 184 for a Wilson
fermion on a 643 x 128 lattice, and depending on the quark mass the condition number of DD is often in the
range 10°...108. The factor 10° reflects the production of an ensemble of 1000 gauge configurations, separated
by ten 7 = 1 HMC trajectories, assuming that each of these requires O(10) inversions.



is usually not available in a standard sparse formatP], but only implicitly, i.e. through a routine
which implements the matrix-vector multiplication v <— Du. One is forced to use Krylov-space
solvers, such as CG [4] or BiCGstab [5], whenever possible with some structure preserving
preconditioning [6]. For a very nice overview of numerical issues in lattice QCD computations
the reader is referred to Ref. [7]. In short, this paper is about efficiently implementing, on
a CPU, the matrix-vector multiplication that is at the heart of solving Eq. by means of
the CG or BiCGstab algorithm, where D is a sparse matrix that encodes the properties of a
“Wilson”, “Brillouin” or “staggered/Susskind” fermion, i.e. D € {Dw, Dg, Ds}.

Lattice QCD production codes tend to use hybrid parallelism, i.e. there is a coarse-grained
parallelism between nodes, and a fine-grained parallelism within each node. The coarse-grained
parallelism is usually implemented with MPI, the fine grained parallelism with OpenMP on
CPUs (alternatively: OpenACC on GPUs). The latter requires a symmetric multiprocessing
(SMP) shared memory architecture within each node. Typically, a geometric domain decompo-
sition is used on the large scale, e.g. a 48% x 96 lattice might be distributed onto a 2 x 2 x 2 x 4
grid of nodes, each of which hosts a local 24* lattice. Explicit MPI commands are used to
organize the “halo exchange” among the 32 nodes, and OpenMP pragmas are used to organize
the work sharing of the Ny,, SMP-threads which handle a given local lattice.

To minimize execution time, the single-node CPU performance must be maximized through
OpenMP parallelization and vectorization pragmas, while overlapping communication and com-
putation must be organized through clever MPI calls. These issues are logically separated, and
this is why it makes senseﬂ to first upgrade a serial code into a fast OpenMP code (with vector-
ization pragmas), and to address MPI parallelization in the second step. This paper reports on
a dedicated effort to efficiently handle the first step, and establishes a ranking among various
memory layout options. With such results in hand, it will be a more straightforward endeavor
to address the second step (adding suitable MPI calls) in a forthcoming publication.

Two properties of the code presented in this article are essential for good balance between
CPU portability and acceptable performance figures (see below). The first feature is the use
of multiple right-hand sides (RHS) in Eq. (), i.e. b and u are matrices of size n x N,, where
N, is the number of RHS. This is crucial on systems limited by memory bandwidth, since the
Dirac matrix D depends on a gauge field U which is loaded from memory (besides u and v,
of course) in each call v <— Du. The second feature is the decision to use the RHS-index as
loop index for the single-instruction-multiple-data (SIMD) pipeline. In QCD terminology one
would say that — besides the N, color and 4 spinor degrees of freedom — an additional “internal
degree of freedom” is introduced in the storage scheme. The main difference is that its value
is a matter of convenience, i.e. it has has no physics implication. This avoids the reshuffle
operation from a generic read-in format (where the site indices on b or v are slower than any
internal degree of freedom) to a dedicated SIMD format that is needed if, say, a subset of the
space-time coordinates of the local lattice is used as SIMD index.

The philosophy behind the code presented in this article is to leave all index computations
and all optimization work to the compiler. Only a set of SIMD pragmas is used to tell the
compiler that it should SIMD-ize loops over the RHS-index (which runs from 1 to N,) with

2Such as “compressed sparse row” (CSR) or “compressed sparse column” (CSC) format; see e.g. the MAT-
LAB documentation on sparse for a quick introduction and a reference.

3Unfortunately this is somewhat orthogonal to the way how CPU resources at large computational infra-
structure centers are allocated. In the technical review the focus is on the scaling behavior versus the number
of nodes. The worse the single-node performance, the easier it is to make the node-scaling graph look nice.



explicit unrolling of color and spinor operations inside the loop. This turns out to be sufficient
for reaching reasonable performance figures on many integrated core (MIC) architectures, such
as the “knights landing” (KNL) chip by Intel which has up to 68 physical cores. A key feature
of this processor (and more modern successors) is the ability to use the new intrinsic instruction
set AVX-512. Accordingly, excellent code performance hinges on the ability to organize fused
multiply-add (FMA) operations on 512 bit longf_f] data sets. Hence, the primary goal of this
article is to explore whether this challenging task can be left to the compiler, if all relevant
information (e.g. the values N., N, and N,, Ny, N,, N;) is given at compile time.

The code presented in this article handles three choices of the fermion discretization in lattice
QCD. The Wilson definition Dy |1], and the staggered definition Dg |2,3] are well known, with
publicly available codes (see e.g. Refs. [8-15]). The Brillouin definition Dy [16H18] is less
popular — in part since there is no publicly available implementation with ful]E] documentation.
In this article each of these formulations is implemented for several vector layouts (see below
for a detailed specification), and the CG and BiCGstab inverter routines (which are part of
the ancillary code distribution) are written in a completely generic manner. The author hopes
that this will enable PhD students and young postdocs to write their own QCD code (e.g. for
hadron spectroscopy) with manageable effort, and give them a handle to study their field of
interest with minimal human constraints and/or dependencies.

This brief exposition of the subject cannot do justice to the effort spent by other authors to
maximize performance on a specific architecture for a given Dirac operator D. Recent review
talks on the interplay between algorithms and machines in lattice QCD include [19-23]. In
addition, there is a number of HPC projects in lattice QCD with similar objectives on several
architectures [24-35]. Preliminary accounts’|of this work were given in [3637]. All performance
measurements were done on three machines at Jiilich Supercomputing Centre. The KNL figures
were obtained’|on DEEP-knl (booted in flat mode) and the JURECA-booster (booted in cache
mode), but the performance difference was marginal. The results for the Skylake architecture
were obtained on DEEP-dam and on JUWELS.

The remainder of this article is organized as follows. The coding guidelines, and the options
for the internal degrees of freedom in the vectors b, u, v are discussed in Sec.[2] A comparison of
the vector layouts for the task of computing vector norms, dot-products, and vectorial multiply-
adds (all employing SIMD pragmas) is found in Sec. . The coding of the clover term (which is
used in conjunction with Dw and Dg) is explained Sec. . The implementations of the Wilson
Laplacian A®*d and Dirac operator Dy are specified in Sec. . The details for the Brillouin
Laplacian AP and Dirac operator Dy are arranged in Sec. @ Analogous reasonings and timings
for the staggered Dirac operator Dg are found in Sec.[7] In addition, it is interesting to study
the performance as a function of the compile-time parameters N,, N,, and N,N,N.N,;; such
results are assembled in Sec. [8 The CG and BiCGstab inverters for all five operators (working
with any ordering of the internal degrees of freedom) are presented Sec. [J] Finally, in Sec.
a summary is attempted. All technical issues are relegated to appendices [AE] a guide to the
ancillary code distribution is given in the Supplementary Material.

4The 64 bytes amount to SIMD pipelines handling 16 real_sp numbers (equivalently 8 real_dp, 8 complex_sp,
or 4 complex_dp numbers) simultaneously.

5 At https://github.com/g-koutsou/qpb there is an undocumented C++ implementation by Giannis Koutsou.

5The attentive reader will notice that performance figures increased quite a bit since these early accounts.

"In flat mode numactl --preferred 1 ./testknl main is used, in cache mode ./testknl main suffices.



2 Coding guidelines and vector layouts

The code to be presented is written in Fortran 2008, which is an excellent choice for scientific
problems with static data structures. Lattice QCD is in this category, and after declaring the
number of colors and the box size via the compile time parameters

integer,parameter :: Nc= 3, Nv=Ncx*4 1! note: number of colors and rhs
integer,parameter :: Nx=34, Ny=Nx,Nz=Ny,Nt=2*Nz !!! note: box size for T=0 physics

an object like the gauge field U,(n), with p € {1,...,4} and n = (z,y, 2,t) the position in
discrete four-dimensional space-time, is conveniently defined as a rank-seven array

complex(kind=sp) ,dimension(Nc,Nc,4,Nx,Ny,Nz,Nt) :: U

with the intrinsic complex data type. Objects defined in “single precision” (sp) use four bytes
per real component, those in “double precision” (dp) use eight bytes per real component.

It is important to keep in mind that Fortran uses the “column major” convention for matrices
and arrays; in U the first color index (from 1... N,) is the fastest moving index, while the fourth
space-time coordinate (from 1...N;) is the slowest moving index. In a nested set of loops

do t=1,Nt

do z=1,Nz

do y=1,Ny

do x=1,Nx
do mu=1,4

U(:,:,mu,x,y,z,t)=float (mu)*eye(:,:)

end do

end do

end do

end do

end do

the t-coordinate must thus be in the outermost loop, followed by the z, y, x coordinates, the
direction index g, the column and row indices in color space, to ensure that the elements of
U are addressed in the order in which they lie in memory. In this example we use the stride
notation to access a contiguous patch of memory through two implied do loops (with correct
ordering built-in); the N? complex unit long patch for the matrix U,(n) is overwritten by ul
where [ is the N, x N, identity matrix in color space, if eye(:,:) was defined accordingly.

Furthermore, this example illustrates our decision to avoid explicit site-index computations
in the code. One might have used dimension(Nc,Nc,4,Nx*Ny*Nz*Nt) in the definition of U,
and an extra line n=(((t-1)*Nz+(z-1) ) *Ny+(y-1)) *Nx+x ahead of the loop over mu, along
with U(:,:,mu,n)=float(mu)*eye(:,:). But this is potentially error prone (especially in
view of a future MPI-spreading of up to four space-time dimensions over several nodes), and it
seems more elegant to leave all index computations to the compiler.

Given our goal of combining N,, column vectors into one object [for D being the staggered
operator Dg the left-hand side of Eq. represents an nxn matrix which acts on a n x N, matrix
with n = N.N,N,N,Ny|, it seems natural to define a staggered multi-RHS vector through

complex (kind=sp) ,dimension(Nc,Nx,Ny,Nz,Nt,Nv) :: suv_sp



but this would imply a detrimental loop-ordering in the staggered Dirac routine (cf. Sec. .
For good performance it is crucial to promote the RHS-index to an internal degree of freedom
(like color) which is ahead of all space-time indices. This leaves us with the two options

complex (kind=sp) ,dimension(Nc,Nv,Nx,Ny,Nz,Nt) :: suv_sp !!! [Nc,Nv]=layoutl
complex(kind=sp) ,dimension(Nv,Nc,Nx,Ny,Nz,Nt) :: suv_sp !!! [Nv,Ncl=layout2

for a “staggered utility vector”, and we shall implement both of them and compare the respective
timings. For Dy, Dg the vectors have yet another internal degree of freedom (called “spinor”,
ranging from 1 to 4), and this implies that we should consider the six options

complex (kind=sp) ,dimension(Nc,04,Nv,Nx,Ny,Nz,Nt) :: vec_sp
complex (kind=sp) ,dimension(04,Nc,Nv,Nx,Ny,Nz,Nt) :: vec_sp
complex (kind=sp) ,dimension(Nc,Nv,04,Nx,Ny,Nz,Nt) :: vec_sp
complex (kind=sp) ,dimension(Nv,Nc,04,Nx,Ny,Nz,Nt) :: vec_sp
complex (kind=sp) ,dimension(04,Nv,Nc,Nx,Ny,Nz,Nt) :: vec_sp
complex (kind=sp) ,dimension(Nv,04,Nc,Nx,Ny,Nz,Nt) :: vec_sp

It [Nc,Ns,Nv]l=layoutl
It [Ns,Nc,Nv]=layout2
It [Nc,Nv,Ns]=layout3
It [Nv,Nc,Ns]=layout4d
It [Ns,Nv,Nc]=layoutbh

!
!
!
!
!
111 [Nv,Ns,Nc]l=layout6

for vectors to be used in conjunction with Wilson-type Dirac matrices (for Dy see Sec. [f] for
Dg see Sec. @, and compare the respective timings.

In Sec. 0] it will be demonstrated that with u,b in the class suv_sp or vec_sp a tolerance
e = 1072, where € = ||Dz — b||/||b||, cannot be reached. Such relative residual norms tend to
stagnate at € ~ 1079, as is typical for attempts to solve Eq. in sp. In practice, this means
that, in order to reach a relative residual norm € < 1079, in addition to v, ¢~ Dspug, also the
operation v, <= Dgpugp must be implemented, and a dp-solver must be used. In other words,
the code needs the ability to allocate objects of the classes suv_dp or vec_dp, with the same
two or six options for the layout of the internal indices, and to feed them to routines which
code the left-multiplication with Dg, Dw, or Dg in dp.

A peculiar feature of this lattice QCD code is that the gauge field U is always in sp, in order
to be conservative on using disk space and memory bandwidth. Hence, even in the dp-version of
the matrix-vector multiplication routine, the Dirac operator depends on a gauge field which is
defined in sp, i.e. vap = Dap|Usp|uap. In Sec. |§I it will be shown that this is perfectly sufﬁcientﬁ
to reach relative residual norms as small as e = 10712

Another feature is that the Dirac operators need not necessarily use the original (“thin link”)
gauge field U,(n), but may use a smeared (“fat link”) gauge background which is referred to
as V,(n) in this article. Specifically a stout-smearing routine [3§] is included’| in the module
testknl util.f90, with parameters psiout = 0.12, Ngiouy = 3 as default[T_U].

In summary, the goal of this article is to find out whether one can use a high-level language
such as Fortran 2008 to write a lattice QCD code which performs well on modern many-core
architectures. By construction such a code is fully portable, but the decision to stay away from
assembly-tuning and cache-line optimization means that all the burden is on the compiler. Our
strategy is to chose a suitable data layout, and to let the compiler know anything which eases
the task of creating fast-performing code. For a modern compiler it is ideal if the trip counts

8This should not come as a surprise; one might think of the routine Vap  Dap|Udp|uap as a routine which
operates on a “copy” Uqp where all significant digits which are not present in Uy, are set to zero.

9An overview of the ancillary code distribution is given in the Supplementary Material.

10The user who prefers an unsmeared gauge field should set ngout = 0; this will establish Vi(n) = Uu(n).



and the array extents are statically'] known (via parameter in Fortran or #define in C). In
the remainder of this paper we will explore whether this approach works in practice.

3 Norms, dot-products and multiply-adds

A Krylov-space solver such as CG and BiCGstab is designed to solve Eq. (1)) via an iterative
process [4H6]. The actual computer implementation (to be discussed in Sec. [9] below) involves
two ingredients. On the one hand, a fast matrix-vector multiplication routine for the chosen
operator D € {Dw, Dg, Ds} on a given (possibly smeared) gauge background V,,(n) is required.
On the other hand, some linear algebra routines are needed, in particular one which determines
the squared 2-norm ||v3, and the dot-product™] (u, v) between two vectors. The matrix-vector
routines for the three Dirac operators will be presented in Secs. [} [6] and [7] (along with timings).
Here we provide similar information for the linear algebra routines mentioned.
For the first staggered layout (locally NcNv) the norm-square routine takes the form

function suv_normsqu_NcNv_sp(suv)
implicit none

complex (kind=sp) ,dimension(Nc,Nv,Nx,Ny,Nz,Nt) ,intent(in) :: suv

real (kind=sp) ,dimension(Nv) :: suv_normsqu_NcNv_sp

real (kind=dp) ,dimension(Nv) :: res !!! note: accumulation variable in "dp"
integer :: x,y,z,t,rhs

res(:)=0.0_dp

'$OMP PARALLEL DO COLLAPSE(2) REDUCTION(+:res) SHARED(suv)

do t=1,Nt

do z=1,Nz

do y=1,Ny

do x=1,Nx
1$0MP SIMD
do rhs=1,Nv

res(rhs)=res(rhs)+sun(myabssqu_sp(suv(:,rhs,x,y,z,t)))

end do

end do

end do

end do

end do

'$0MP END PARALLEL DO

suv_normsqu_NcNv_sp=real (res,kind=sp)

end function suv_normsqu_NcNv_sp

where the pure elemental function myabssqu sp returns |z|? in dp (for 2 € C in sp), the
relevant line being myabssqu_sp=dble(real(z)**2)+dble(aimag(z)**2). This piece of code

1'With such knowledge in hand, more informed vectorization cost-model decisions (whether or not to peel,
unroll factors, etc.) are possible. Also compiler-based analysis of alignment for vectorization becomes more
effective, and prefetch distances chosen by the compiler tend to be more adequate. Finally, the compiler is able
to do more efficient outer-loop optimizations, for instance partial redundancy elimination (PRE) for address
calculations, and partial dead store elimination (PDSE).

12Throughout the article we use the physics convention where (u,v) € C is linear in the second argument.



single precision double precision
Nipr = 136 Nypyy = 272 | Ny = 136 Ny, = 272
NcNsNv 0.0090 0.0091 0.0174 0.0183
NsNcNv 0.0088 0.0091 0.0173 0.0183
NcNvNs 0.0089 0.0091 0.0174 0.0183
NvNcNs 0.0109 0.0092 0.0173 0.0182
NsNvNc 0.0188 0.0173 0.0177 0.0183
NvNsNc 0.0104 0.0093 0.0174 0.0182
NcNv 0.0045 0.0040 0.0044 0.0046
NvNc 0.0028 0.0023 0.0044 0.0046

Table 1: Time in seconds to compute all N, norms of a multi-RHS vector on the 68-core KNL
architecture with the array allocated in MCDRAM. The upper part is for Wilson-type vectors
(spinor and color structure), the lower part for Susskind-type vectors (color structure only).
The lattice size is 343 x 68 with parameters N, = 3, N, = 12. The rows refer to the array layout,
the columns to the array precision and the number of OpenMP threads used. Regardless of the
vector precision, the accumulation variable of the /N, norms is in double precision.

single precision double precision

Nine =24 Ny =48 Ny =96 | Nypy =24 Ny =48 Ny = 96
NcNsNv | 0.0162 0.0134 0.0136 0.0278 0.0267 0.0270
NsNeNv | 0.0163 0.0134 0.0135 0.0278 0.0266 0.0270
NcNvNs | 0.0165 0.0135 0.0136 0.0277 0.0267 0.0270
NvNcNs | 0.0172 0.0135 0.0135 0.0279 0.0266 0.0269
NsNvNc | 0.0189 0.0136 0.0135 0.0285 0.0266 0.0269
NvNsNc | 0.0172 0.0135 0.0135 0.0280 0.0267 0.0269

NcNv 0.0045 0.0035 0.0033 0.0072 0.0067 0.0069

NvNc 0.0042 0.0033 0.0033 0.0071 0.0068 0.0069

Table 2: Same as Tab. [I] but on the 2 x 24-core (dual socket) Skylake architecture.

illustrates important principles of the ancillary code distribution. Besides the (correctly or-
dered) loops over the space-time indices x,y,z,t there is a sum over color, and the loop over
the RHS-index rhs is equipped with a pragma that instructs the compiler to use it for filling the
SIMD pipeline. The construct !$0MP PARALLEL DO lets the compiler organize the work share
among the Ny, threads which are spanned by the z and ¢ loops, due to the clause COLLAPSE(2).
The variable suv is shared, and the clause REDUCTION (+:res) means that the results accumu-
lated by individual threads are combined into the variable res. It is worth pointing out that
all accumulation is done in dp, despite the input and output variables being in sp.

Such a routine needs to be written for each internal index ordering, i.e. two sp-routines
for Susskind-type vectors and six for Wilson-type vectors. In addition, a slightly modified
version of these eight routines needs to be provided for input/output variables in dp (here the
accumulation variable is still in dp, not in quadruple precision). Overall, sixteen routines want
to be tested, for various values of Ny,. Depending on the hyperthreading capabilities of the
architecture, the values are Ny, € {2Npy, 4Nny } for four threads per hardware core (e.g. the
KNL chip), or Ny € {Npw, 2Nny } for two threads per hardware core (e.g. the Skylake chip).



single precision double precision
Nipr = 136 Nypyy = 272 | Ny = 136 Ny, = 272
NcNsNv 0.0392 0.0302 0.0575 0.0504
NsNcNv 0.0268 0.0277 0.0448 0.0500
NcNvNs 0.0296 0.0240 0.0426 0.0465
NvNcNs 0.0214 0.0221 0.0424 0.0445
NsNvNc 0.0214 0.0228 0.0433 0.0456
NvNsNc 0.0215 0.0221 0.0425 0.0447
NcNv 0.0068 0.0055 0.0107 0.0111
NvNc 0.0054 0.0057 0.0107 0.0112

Table 3: Time in seconds to perform all N, increment operations u? = u® + v®a® with
a® e Candi=1,...,N, on the 68-core KNL architecture with the multi-RHS vectors u, v
allocated in MCDRAM. The lattice size is 343 x 68 with parameters N, = 3, N, = 12.

single precision double precision

Nthr =24 Nthr == 48 Nthr - 96 Nthr =24 Nthr == 48 Nthr - 96
NcNsNv | 0.0584 0.0484 0.0475 0.1399 0.1087 0.1034
NsNcNv | 0.0507 0.0463 0.0479 0.1392 0.1091 0.1033
NcNvNs | 0.0468 0.0466 0.0450 0.0932 0.0902 0.0906
NvNcNs | 0.0471 0.0469 0.0451 0.0934 0.0925 0.0903
NsNvNc | 0.0463 0.0457 0.0452 0.0943 0.0901 0.0905
NvNsNc | 0.0470 0.0465 0.0451 0.0936 0.0930 0.0903

NcNv 0.0119 0.0115 0.0116 0.0238 0.0234 0.0233

NvNc 0.0118 0.0116 0.0115 0.0237 0.0231 0.0232

Table 4: Same as Tab. 3] but on the 2 x 24-core (dual socket) Skylake architecture.

The KNL data were obtained on a single-chip node with Ny, = 68 physical cores, the Skylake
data on a dual-socket node with a total of Ny, = 2 x 24 = 48 physical cores.

The timings of the routines {vec,suv} normsqu {sp,dp} are listed in Tabs. [I} [ for the
KNL and Skylake architectures, respectively. The figures give the time needed to compute all
N, = 12 norm-squares with N. = 3 colors on a lattice with 2672672 sites. A peculiarity of
the KNL architecture is that the lattice fits into the MCDRAM, and the vector is initialized
with the same number of threads. This “first touch” policy is used in all subsequent timings.
On the KNL the MCDRAM high-bandwidth memory has an aggregate bandwidth™| of about
450 GB/s. In sp the N, (complex) staggered vectors occupy 8N.N,N,N,N,N; = 769 729 536
bytes in memory, hence transferring them to the registers takes 0.0017 s (assuming zero latency).
In dp the bandwidth limit amounts to 0.0034s, and for Wilson-type vectors these figures are
four-fold increased to 0.0068 s and 0.0136 s, respectively. Comparing the actual entries in Tab.
to these lower bounds, we see that most of the timings are reasonably close to it, only the
staggered NcNv layout in sp takes considerably longer. Regarding two-fold versus four-fold
hyperthreading, there is no universal law on the KNL architecture; sometimes one option is
faster, sometimes the other. The timings in Tab. [2| for the Skylake architecture are generally

13See e.g. https://colfaxresearch.com/knl-mcdram.



single precision double precision
Nipr = 136 Nypyy = 272 | Ny = 136 Ny, = 272
NcNsNv 0.0162 0.0174 0.0241 0.0253
NsNcNv 0.0162 0.0176 0.0322 0.0346
NcNvNs 0.0143 0.0114 0.0205 0.0246
NvNcNs 0.0101 0.0105 0.0200 0.0205
NsNvNc 0.0162 0.0175 0.0322 0.0346
NvNsNc 0.0112 0.0120 0.0219 0.0233
NcNv 0.0027 0.0030 0.0050 0.0051
NvNc 0.0026 0.0027 0.0048 0.0049

Table 5: Time in seconds to apply a y-matrix to all NV, columns of a multi-RHS vector on
the 68-core KNL architecture with the array allocated in MCDRAM. The upper part is for s
and Wilson-type vectors (spinor and color structure), the lower part for ¢ and Susskind-type
vectors (color structure only). The lattice size is 34% x 68 with parameters N, = 3, N, = 12.

single precision double precision

Nthr =24 Nthr =48 Nthr =96 Nthr =24 Nthr =48 Nthr =96
NcNsNv | 0.0326 0.0328 0.0325 0.0525 0.0505 0.0514
NsNcNv | 0.0327 0.0330 0.0324 0.0658 0.0657 0.0651
NcNvNs | 0.0226 0.0208 0.0205 0.0455 0.0429 0.0416
NvNcNs | 0.0210 0.0205 0.0197 0.0454 0.0431 0.0414
NsNvNc | 0.0326 0.0330 0.0325 0.0658 0.0658 0.0652
NvNsNc | 0.0223 0.0217 0.0210 0.0470 0.0445 0.0435

NcNv 0.0061 0.0056 0.0055 0.0110 0.0104 0.0102

NvNc 0.0055 0.0055 0.0053 0.0109 0.0105 0.0102

Table 6: Same as Tab. [f] but on the 2 x 24-core (dual socket) Skylake architecture.

slower, but not dramatically so. On this architecture the ordering of the internal indices seems
irrelevant, and the norm-square operation does not benefit from two-fold hyperthreading.

Changing the task from computing the squared norm [|v||3 to computing the dot-product
(u,v) will double both the memory traffic, and the flop count, since r = r 4+ Re*(v) + Im?(v)
takes four flops, while » = r + Re(u)Re(v) — Im(u)Im(v),7 = i + Re(u)Im(v) — Im(u)Re(v)
takes eight flops. We thus expect that all timings (regardless of precision, and architecture)
will double. A quick test reveals this is precisely what happens (tables not included).

Another important ingredient in an iterative solver is the vectorial multiply-add operation.
Instead of the generic w® + u® + v@a® for ¢ € {1,..., N,}, which is more demanding on
memory bandwidth, we implement two multiply-add routines with overwrite

incr: u® « ul® 4 p@a® (i=1,...,N,) (2)
anti: 0@ u@ 4900 (i=1,...,]N,) (3)
for ) in R or C. For the precision of the (complex) vectors there are three possibilities: (i) u, v
both in sp, (i) u,v both in dp, and (4i7) v in dp and v in sp (relevant to the mixed-precision

solvers mentioned in Sec. @ Furthermore, each of the NV, vectors may have spinor degrees
of freedom (length 4N.N,N,N,N;) or not (length N.N,N,N,N;). Hence, the names of these
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routines are {vec,suv}_{incr,anti} {r,c}{sp,dp}, and the “r” or “c” indicates whether the
a® are real or complex. The respective timings on the KNL architecture are summarized in
Tab.[3] In sp the layouts with the color degree of freedom first (i.e. NcNsNv and NcNvNs) take
a little longer than the remaining four, and for the latter ones four-fold hyperthreading does
not seem to bring any advantage over two-fold hyperthreading. Quite generally, there is factor
two difference between sp-timings and dp-timings of and . Analogous timing results on
the Skylake architecture are listed in Tab. . In this case using one socket (N, = 24) or both
sockets without (N, = 48) or with (N, = 96) hyperthreading yields similar figures.

Another routine that proves relevant below is the left-multiplication with ~5 for Wilson-type
vectors and € = (—1)%1#2testss = ~0 @ &0 for Susskind-type vectors. Such results are collected
in Tab. p] for the KNL, and in Tab. [6] for the Skylake architecture. Once more, we find that the
vector layout has a mild effect on the actual timing on the KNL, and essentially no effect on
the Skylake node. And the effect of hyperthreading is negligible on both architectures.

Overall, the chosen vector layout (i.e. the order of the internal indices color/spinor/RHS)
affects the timings of the linear algebra routines by just a few percent. As we shall see below, for
the Wilson and Susskind operators the matrix-vector operation is about an order of magnitude
more expensive than the linear algebra operations. And the Brillouin operator is almost two
orders of magnitude more time consuming. In view of these forthcoming results, it is fair to
say that the linear algebra routines have been optimized to the point where their CPU share
is a subdominant part of the overall solver time (cf. Sec. [9] below).

4 Clover routine

The clover routine is a matrix-vector routine which is appliedE] in addition to the Wilson or
Brillouin Dirac operator D. The operation is v <— (D + C)u with D € {Dw, Dg} and
Csw
C(n,m) = ——5 O Fp (1) 0, (4)

pu<v

where n and m are positions in the four-dimensional lattice. It acts on the vector v non-trivially
in color and spinor space, but as an identity in RHS space and position space. In other words,

it acts locally in space-time, so v(n) depends on u(m) only for n = m. Depending on the layout
(i.e. the ordering of the color/spinor/RHS indices) Eq. is thus a shorthand for

([ ®0,, ® F,(n) for NcNsNv
I®F,(n)®o, for NsNcNv
o ®I® F,,(n) for NcNvNs 5)
o @ F,(n) @1 for NvNcNs
F.,n)®I®ac,, for NsNvNc

L F.(n)® 0 @1 for NvNsNc

C(TL, m) = _CSTW Z 5n,m X

u<v

where the sum”| is over the six plaquette orientations with p < v. For each orientation the
4 x 4 matrix 0., = 3[4, V] is hermitean in spinor space, and the clover-leaf field-strength

1With csw = 0 both Dw and Dg induce cut-off effects O(a). With the tree-level value csw = 1 the latter
are mitigated to O(aa), and with the one-loop value to O(a?a), where o = g2 /(4) is the strong coupling
constant. With a non-perturbatively determined value 5, cut-off effects can be lifted to O(a?) [39-41].

5Since 0, and F),, are both anti-symmetric in y <> v, the sum may be written without the constraint among
1, v, but with a prefactor cgw /4 instead of cgw /2.
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single precision double precision
Nipr = 136 Nypyy = 272 | Ny = 136 Ny, = 272
NcNsNv 0.0426 0.0375 0.0737 0.0642
NsNcNv 0.0424 0.0375 0.0728 0.0635
NcNvNs 0.0461 0.0447 0.0640 0.0595
NvNcNs 0.0349 0.0296 0.0617 0.0570
NsNvNc 0.0435 0.0370 0.0634 0.0589
NvNsNc 0.0340 0.0291 0.0547 0.0559

Table 7: Time in seconds to apply the clover term to all N, columns of a multi-RHS vector
on the 68-core KNL architecture with the vector and the precomputed field-strength allocated
in MCDRAM. The lattice size is 34% x 68 with parameters N, = 3, N, = 12. The best timings
correspond to 2500 Gflop/s in sp, and 1300 Gflop/s in dp — see App. [E| for details.

single precision double precision
Nine =24 Ny =48 Ny =96 | Ny =24 Ny =48 Ny = 96
NcNsNv | 0.0606 0.0519 0.0519 0.1222 0.1004 0.0979
NsNeNv | 0.0612 0.0519 0.0518 0.1212 0.0994 0.0982
NcNvNs | 0.0621 0.0523 0.0519 0.1137 0.0977 0.0973
NvNcNs | 0.0560 0.0516 0.0520 0.1148 0.0986 0.0975
NsNvNc | 0.0605 0.0520 0.0521 0.1140 0.0971 0.0974
NvNsNc | 0.0560 0.0513 0.0520 0.1168 0.0991 0.0976

Table 8: Same as Tab. [7} but on the 2 x 24-core (dual socket) Skylake architecture. The best
timings correspond to 1450 Gflop/s in sp, and 750 Gflop/s in dp.

operator F),,(n) is hermitean in color space. In consequence the clover term is a hermitean
contribution to the combined matrix-vector operation v < (D + C')u.

The field-strength operator F),, is based on the smeared (“fat-link”) gauge field V,(n) which
derives from the original (“thin-link”) gauge field U,(n). Here, any type of smearing may be
used; the code uses stout-smearing [38] which produces differentiable links (though this point
is not relevant to this article). The field-strength is precomputed in a routine which takes the
(possibly smeared) gauge field V as input; the result is stored in the rank-seven array

complex (kind=sp) ,dimension(Nc,Nc,6,Nx,Ny,Nz,Nt) :: F

since a solver requests dozens to millions of operations v < (D + C)u in which U (and thus V')
stays unchanged. Since C' depends on U only via F, it payﬁ to compute F),, only once. The
six orientations stand for (u,v) € {(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)}.

The clover routine takes the field-strength array F as input, as well as the vector old, denoted
u in the line above . The vector new at position n, i.e. v(n) above , is incremented by
—3csw > p<v O (n) applied to u(n). The operation is thus site-diagonal, and this means
that the OpenMP thread-parallelization is easily achieved by declaring SHARED (old,new,F)
in the '$OMP PARALLEL DO construct. A nice side-effect is that any read-collision or write-
collision among the threads is excluded by construction, since each thread reads from (and
writes to) a specified segment in memory, with no overlap among the segments (there is an

16With HPC architectures becoming increasingly memory bandwidth limited, this may change in the future.
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Figure 1: Clover term performance versus the number of active threads in sp and dp, for the
KNL and the dual-socket Skylake architectures (same parameters as in Tab. [7)).
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implied barrier at the end of the '$0MP PARALLEL DO construct). The structure of the routine
is thus similar to the function suv_normsqu_sp displayed in Sec. |3 with four nested do-loops
to cover all space-time points. Since all site-index computations are handled by the compiler
no large lookup-table is needed. The reader is reminded that the coding must be done for sp
and dp vectors separately. Within sp or dp, also for each vector layout a dedicated routine is
needed to achieve good performance (with a wrapper routine which presents them as a single
routine to the outside world).

The timings of the clover routine (which is specific to Wilson-type vectors) are listed in
Tabs. [7], [§ for the KNL and Skylake architectures, respectively. On the KNL, the layouts
NvNcNs and NvNsNc are faster than the remaining four. This is unsurprising, since the SIMD
operation, which is over the RHS-index 1:Nv, should affect the fastest (in Fortran: first) index
of the array. Obviously, this performance hierarchy among the six possible layouts will persist
in the Wilson-type Dirac operators. In the sections on Dw, Dg we shall thus restrict ourselves
to these two layouts, plus the most naive NcNsNv for comparison. On the Skylake architecture,
the performance of the clover term is essentially the same for all layout options. On the latter
architecture the memory bandwidth is the limiting factor; so the AVX-512 instruction set is
pointless for this routine (though it exists on the Skylake architecture).

The scaling of the clover routine (in sp and dp, for the NvNsNc layout, with 34% x 68 volume,
and N. = 3, N, = 12) as a function of the number of active threads is shown in Fig. . On the
KNL architecture the number of threads ranges from 1 to 4N, = 272, where N, = 68 is the
number of physical cores. On the Skylake architecture the number of threads ranges from 1 to
2Ncpy = 96, where N, = 48 is the number of physical cores in the full dual-socket node. On
the KNL chip we find essentially perfect scaling behavior until every physical core hosts one
thread. There is a reduced slope associated with the second thread on a physical core (from
69 to 136), and modest improvement with the third (from 137 to 204) and fourth (from 205
to 272) thread on a given core. On the Skylake architecture saturation effects set in at O(10)
threads; this is a clear sign of the process being limited by memory bandwidth.

A time of 30ms for N, = 12 in Tab. [7| amounts to the clover operator being applied to a
single vector with 3 -4 - 343 - 68 = 32072064 complex elements within 2.5 ms. As we shall see
in Secs. [fland [6] this is about one third of the time needed to apply the Wilson Dirac operator
@, and the Brillouin Dirac operator takes an order of magnitude longer. In short, the
clover routine has been optimized to the point where further optimization would speed up the
solver routines (to be discussed in Sec. [9 below) only marginally.

5 Wilson Laplace and Dirac routines

For a given V,(n) the Wilson Dirac operator with optional clover term (4]) is defined as [1]

Dyw(n,m) =3 7, Vi (n,m) — C;—TAStd(n, m) + moSnm + aC(n, m) (6)
o

where a is the lattice spacing, Vf}d is the 2-point discretization of the covariant derivative

aVifd(n, m) =

[Vu<n)5n+ﬂ7m - VJ (n— ﬂ)(sn—ﬂ,m} (7)

N —
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single precision double precision
Nipr = 136 Nypyy = 272 | Ny = 136 Ny, = 272
NcNsNv 0.1387 0.1375 0.2094 0.2162
NvNcNs 0.1031 0.0973 0.1808 0.1727
NvNsNc 0.0749 0.0745 0.1485 0.1602

Table 9: Time in seconds per matrix times multi-RHS vector operation for the Wilson Laplace
operator on the 68-core KNL architecture, with all variables allocated in MCDRAM. The
lattice size is 343 x 68 with parameters N, = 3, N, = 12. The best timings correspond to
1000 Gflop/s in sp, and 500 Gflop/s in dp — see App. [E| for details.

single precision double precision
Nthr - 24 Nthr — 48 Nthr - 96 Nthr = 24 Nthr - 48 Nthr = 96
NcNsNv | 0.1366 0.1148 0.1197 0.2581 0.2215 0.2450
NvNcNs | 0.1262 0.1141 0.1190 0.2579 0.2216 0.2451
NvNsNc | 0.1221 0.1141 0.1192 0.2390 0.2200 0.2443

Table 10: Same as Tab. [0} but on the 2 x 24-core (dual socket) Skylake architecture. The best
timings correspond to 650 Gflop/s in sp, and 340 Gflop/s in dp.

and A is the 9-point discretization of the covariant Laplacian

A (n,m) = = 80um + Y [Vi(n)dnsm + Vii(n = 1)80_jim] - (8)
“w

The sums in @, extend over the positive Euclidean directions u € {1,...,4}, and the bare
quark mass mg undergoes both additive and multiplicative renormalization. How the V-links
in fod, A and O relate to the original U-links has been explained in Sec. . Note that the
“standard derivative” is anti-hermitean, while the “standard/Wilson Laplacian” |8 and the
clover term are hermitean operators. The species-lifting parameter is typically set to r = 1,
and the operator @ is HPC friendly, since its stencil contains at most 1-hop terms.

The action of the Wilson operator @ at r = 1,csw = 0 on a Dirac vector ¢ (spinor®color
internal degrees of freedom) with periodic boundary conditions in all directions is given by

(Dwy)(n) = % > Al D@V (n+i) ~[(vu+ D)@V, (n—)Jih(n—f1) }+(4+mo)ib(n) (9)

and our task is to implement a routine which performs this operation efficiently. The action of
the embedded Laplace operator alone (which we implement for comparison) is

1

Yoln) = 2 3 [~ Valmo i) = Vi n— i — )] + (4+ “0)0m)  (10)

1 m2

o _Astd + "0
(-58"+3

with the mass parameter mg replaced by m2/2, in line with the standard boson propagator in
quantum field theory. In (9) and we have taken the liberty to set the lattice spacing a = 1.
From a coding viewpoint it is clear that the Wilson Laplace operator is easier to im-

plement than the Wilson Dirac operator @, since it acts triviallyE] in spinor space, and we

"Hence one might let AS*d act on a Susskind-type vector (color structure only), and the ancillary code distri-
bution contains such a multiplication routine under the label app_wsuv_{sp,dp}, see Supplementary Material.
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Figure 2: Wilson Laplace operator performance versus the number of threads in sp and dp, for
the KNL and the dual-socket Skylake architectures (same parameters as in Tab. [J)).
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proceed with implementation details of this routine. The main difference to the clover routine
discussed in the previous section is that the Wilson Laplacian is not site diagonal; it has
a 9-point stencil, since ey (n) depends, besides 1qq(n), on the eight points 1gq(n + ) with
p € {1,2,3,4}. From the perspective of a given thread, the problem with SMP shared-memory
parallelization is that these data may lay in the patch of memory which is associated'] with
another thread. Hence read-collisions (or even worse write-collisions) may arise, if different
threads attempt to read from (or write to) one portion of memory at the same time. The good
news is that there is — within the SMP-paradigm — a simple and effective strategy which bans
write-collisions fully, and makes read-collisions very unlikely [36}[37]. One accumulates, for each
n, the nine contributions (from the central point and from the eight nearest neighbors) in a
thread-private variable, e.g. site(1:Nv,1:4,1:Nc), and writes it once to ey (n). The design
of the routine is thus governed by a set of four nested loops (over the z,y, z, t-directions, respec-
tively) that generate the space-time point n of the out-vector 1yey, with a SHARED (01d ,new,V)
clause in the '$0MP PARALLEL DO construct. In the accumulation process one uses ! $0MP SIMD
pragmas to vectorize the summation over the RHS-index, with explicit unrolling of color/spinor
indices inside. The usual comments regarding separate implementations of the sp/dp-versions
(and the various vector layouts) apply; for details see App. .

The timings of the Wilson Laplace routine are listed in Tabs. [9] for the KNL and
Skylake architectures, respectively. On the KNL chip the vector layout is important; for good
performance the SIMD index rhs must be first, and the option NvNsNc wins the contest. On
the Skylake node all vector layouts deliver comparable speed. Most notably, already 24 threads
yield almost maximal performance; hence for this routine the second socket (which is populated
by threads 25—48 and 73— 96 under full load) is essentially pointless. For the Wilson Laplacian
the Skylake timing surplus (relative to KNL) is about a factor two.

The scaling of the Wilson Laplace routine (in sp and dp, for the NvNsNc layout) as a function
of the number of active threads is shown in Fig.[2] The parameters, and the range over which the
number of threads is varied, are the same as in Sec. 4l On the KNL architecture we find nearly
perfect scaling behavior until every physical core hosts one thread. A second thread per core
brings a tiny improvement, while a third and fourth thread tend to deteriorate performance. On
the Skylake architecture the bottleneck in memory bandwidth is effective from O(20) threads;
and there is a local maximum at 68 threads.

The coding of the Wilson Dirac operator is similar to the Laplacian, except that extra
operations with £, are involved. Hence, one would naively expect that the matrix-vector
operation @D takes twice as long as . Fortunately, actual timings are in the same ball-park
(see below). The reason is that for every p the operator (v, F1) in @ is a projector. As a
result, for each y the multiplication with V,,(n) or V/f(n— ji) in color space can be limited to an
object which is half in size, see App. [A] for details. Otherwise the implementation follows the
example of the Laplacian sibling routine, with an overall !$0MP PARALLEL DO construct on the
set of nested space-time loops, and SIMD vectorization over the RHS-index in the part which
increments the thread-private variable site(1:Nv,1:4,1:Nc). This accumulation variable is
eventually written into the memory block of ¥y (n) as specified in App. .

The timings of the Wilson Dirac routine at cgw = 0 are listed in Tabs. for the
KNL and Skylake architectures, respectively. On the KNL chip good performance is achieved
whenever the SIMD index rhs is in front, and the option NvNsNc wins the contest. On the

18No inconsistency may arise, but read/write-collisions among threads are detrimental to the performance.
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single precision double precision
Nipr = 136 Nypyy = 272 | Ny = 136 Ny, = 272
NcNsNv 0.1269 0.1306 0.1953 0.2246
NvNcNs 0.1025 0.1013 0.2032 0.1992
NvNsNc 0.0938 0.0913 0.1654 0.1633

Table 11: Time in seconds per matrix times multi-RHS vector operation for the Wilson Dirac
operator @ on the 68-core KNL architecture, with all variables allocated in MCDRAM. The
lattice size is 34 x 68 with parameters N, = 3, N, = 12, cgw = 0. The best timings correspond
to 480 Gflop/s in sp, and 260 Gflop/s in dp — see App. |[E]| for details.

single precision double precision
Nthr - 24 Nthr — 48 Nthr - 96 Nthr = 24 Nthr - 48 Nthr = 96
NcNsNv | 0.1472 0.1148 0.1183 0.2768 0.2204 0.2460
NvNcNs | 0.1274 0.1145 0.1194 0.3009 0.2378 0.2485
NvNsNc | 0.1233 0.1138 0.1179 0.2466 0.2218 0.2448

Table 12: Same as Tab. |11 but for the 2 x 24-core (dual socket) Skylake architecture. The
best timings correspond to 350 Gflop/s in sp, and 180 Gflop/s in dp.

Skylake node all memory layouts fare in the same league, and 48 threads (i.e. one per physical
core on either socket) reach maximum performance.

The scaling of the Wilson Dirac routine (in sp and dp, for the NvNsNc layout) as a function
of the number of active threads is shown in Fig. 3] On the KNL architecture we find nearly
perfect scaling behavior until every physical core hosts one thread, with mild improvement
by a second thread per core, and flat or decreasing behavior after this point. On the Skylake
architecture maximum performance is already reached with one thread per physical core on one
socket. Again, there is a local maximum at 68 threads, and the figure looks like a carbon copy
of Fig. . The computational intensity (flops per load from memory, see App. [E]) of the Wilson
Dirac operator is so low that the second Skylake socket hardly boosts performance. This will
be different with the Brillouin Laplace and Dirac operators.

6 Brillouin Laplace and Dirac routines

For a given V,(n) the Brillouin Dirac operator with optional clover term ({4)) is defined as [16}/17]

(11)

Dg(n,m) = Z%Vifo(n, m) — %Abri(n, m) + mgdy,,m + aC(n, m)
I

where the isotropic derivative VEO is the b4-point discretization of the covariant derivative

P1 [Wu(n)5n+ﬂ,m - W_M(n)(‘;n—ﬂ,m]
022 1y W) — (1= =)

03Dty Wao()0nsjipm = (1= =)

042

aVi®(n,m) =

+ o+ o+

#(,p,031) [Wﬂ”ﬂg<”)5n+ﬂ+ﬁ+ﬁ+&,m - (,u — _M)]
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hops #terms #paths formula
1 8 1 Wy(n) =V,(n) using smeared link with p € {£1,+2,+3, +4}
2 24 2 Wun)=3V.(m)Vi(n+i) + V,(n)V.(n+0)]
3 32 6 Wopln) = é[Vu( WV, (n+)Vy(ntji+2) + perms]
4 16 24 Wope(n) = 51 [Vu(m)Vy (n+ ) Vy(n+ i+ 2) Vo (n+ i+ 0+6) + perms]

Table 13: Summary of on/off-axis links Wg;,(n), with lengths between 1 and 4 hops. The
number of paths contributing to a given term matches the (total) number of permutations.
Starting at site n, there are 1+ 8 + 24 + 32 + 16 = 81 directions, but one is trivial (“no hop”),
and the remaining 80 can be reduced to 40, based on W_g,.(n) = W/ (n — dir). In the code W
is precomputed and stored in the array W(Nc,Nc,40,Nx,Ny,Nz,Nt). Note that for 36 of the 40
directions the entry is not special unitary; here gauge compression is not possible. Alternatively,

the prefactors 2 5 6, 2 7 might be replaced by Psy(n.); in this case gauge compression is possible.

and the Brillouin Laplacian AP is the 81-point discretization of the covariant Laplacian
2 A bri
a A" (n,m) = XNgOnm + A E W, (n)0ntim
( ) 0 %n, 1 L u( ) +i,

+ )\2 Z#( ») Wuu(n)5n+ﬂ+l?,m

)

+ )\3 Z;ﬁ(u,l/,p) Wuup(n)én-i-ﬂ-i-ﬁ-i-ﬁ,m
+ A Z ( Wwpo (0)0nt it pta:m (13)

with (p1, pa, p3, pa) = (64,16,4,1)/432 and (Ao, A1, Ao, Az, Ay) = (—240,8,4,2,1)/64. The sum
in extends over the positive Euclidean directions, i.e. u € {1,...,4}, and the bare quark
mass mg undergoes both additive and multiplicative renormalization. In Eq. the last sum
extends over (positive and negative) indices whose absolute values are orderd (|v| < |p| < |o])
and different from g (which is > 0). In Eq. the last sum extends over indices whose absolute
values are ordered (|u| < |v| < |p| < |o]). Here Wai(n) denotes a link in direction “dir” which
may be on-axis (dir=pu) or off-axis with Euclidean length /2 (dir=pv), V3 (dir=pvp), V4
(dir=pvpo). This Wy (n) is defined as the average of all chains of V-links that connect n and
n + dir with the minimum number of hops. How the V-links (contained in W and C) relate to
the original U-links has been explained in Sec. As a result, Wg;(n) is a legitimate parallel
transporter from n + dir to n, see Tab. for details. More details on the physics motivation
and the free-field behavior of this operator are given in Refs. [16}|18].

From the viewpoint of computational expedience, it payﬂ to precompute the W-links,
and to feed the routine that eventually implements with Wgi,(n) [and possibly F),,(n), if
csw > 0]. Similar as with the Wilson Dirac operator the “isotropic derivative” is anti-
hermitean, while the “Brillouin Laplacian” and the clover term are hermitean operators.
The species-lifting parameter is typically set to r = 1, and from a HPC viewpoint the challenge
with the operator is that its stencil contains up to 4-hop terms.

The action of the Brillouin operator at r = 1, csw = 0 on a Dirac vector ¢ (spinor®color

V50,0 )

19This holds on current CPU architectures, including the KNL and Skylake chips. With the anticipated
increase of the compute-to-bandwidth capacity ratio, this may change at some point in the future.
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internal degrees of freedom) is given by [with v_, = —~, for u > 0]
Ao A1 .
(De)(n) = (mo—)(n) + 3 [(prya = 5) © W) |1 + 1)
m

2 [(pzw— 2y ®Wuu(n)}¢(n+,&+ﬁ)

2
#(1,v)
A A~ A ~
+ Y [t =3 @ W) |vln+ i+ 5+ 5)
#(1v:p)
A A A ~ A~
D DR (VA 5) & Wonpo (1) |00 + i+ 7+ 4 5) (14)
#(.1:p,0)

where now even p admits negative values, and our task is to implement a routine which performs
this operation efficiently. The action of the embedded Laplace operator ([13]) is

m% )\0

Jotn) = (50— 2ypm) ~ 23 Waln)win + )

1 .. md
o _Abl‘l )
(-38"+3
A2 L

#(uv)

A3 o
#(1,v,p)

A4 e
- 5 > Wpe(n)(n+ i+ + p+6) (15)

#(1,v,0,0)

where the same comment on p applies, and the mass parameter reflects the usual choice for the
Euclidean boson propagator. In both and the previous restrictions carry over, i.e. the
first sum is over 8/1! = 8 directions, the second one over 8 -6/2! = 24 directions, the third sum
is over 8-6-4/3! = 32 directions, and the last one over 8-6-4-2/4! = 16 directions, see Tab.
for details. All together, we have 80 non-trivial directions, and this is exactly what we expect
if the total sum extends over a 3* cube centered around the space-time point n = (z,y, z,t). In
and we have taken the liberty to set the lattice spacing a = 1.

Obviously the Brillouin Laplace operator is easier to implement than the Brillouin Dirac
operator , since it acts triviallyﬂ in spinor space, so we consider this routine first. At first
sight looks complicated, but the five terms can be combined in a convenient manner. Put
differently, there is no need to organize the matrix-vector operation separately for 0-hop, 1-hop,
..., 4-hop terms. Given that the off-axis links W, (n), W, (n), W,.,(n), W,e(n) are contained
in the single array W(Nc,Nc,40,Nx,Ny,Nz,Nt), it is more convenient (and faster) to organize
the routine through a nested set of four additional loops (the variables go x,go_y,go_z,go_t
take the values —1,0,+1) which address the 81 positions m of ¥yq(m) in the 3* hypercube
centered around n. To pick the right prefactor from the set {%mg — %)\0, —%)\1, cee —%)\4}, it
suffices to know which distance (in “taxi-driver metric”) the vector [go_x,go_y,go_z,go_t]

20Hence one might let AP act on a Susskind-type vector (color structure only), and the ancillary code distri-
bution contains such a multiplication routine under the label app_bsuv_{sp,dp}, see Supplementary Material.
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Figure 4: Brillouin Laplace operator performance versus the number of threads in sp and dp,
for the KNL and the dual-socket Skylake architectures (same parameters as in Tab. [14)).
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single precision double precision
Nipr = 136 Nypyy = 272 | Ny = 136 Ny, = 272
NcNsNv 0.9814 1.0363 1.6139 2.3746
NvNcNs 0.8146 0.8685 1.6750 2.4589
NvNsNc 0.6574 0.7611 1.4889 2.1980

Table 14: Time in seconds per matrix times multi-RHS vector operation for the Brillouin
Laplace operator on the 68-core KNL architecture, with variables allocated in MCDRAM.
The lattice size is 343 x 68 with parameters N, = 3, N, = 12. The best timings correspond to
1220 Gflop/s in sp, and 540 Gflop/s in dp — see App. [E| for details.

single precision double precision
Nthr =24 Nthr == 48 Nthr - 96 Nthr =24 Nthr = 48 Nthr - 96
NcNsNv | 1.2716 0.6758 0.5580 2.0792 1.1825 1.0767
NvNcNs | 1.1534 0.6266 0.5324 1.8679 1.0877 1.0182
NvNsNc | 1.1746 0.6288 0.5355 1.9440 1.1489 1.0844
Table 15:  Same as Tab. [14] but for the 2 x 24-core (dual socket) Skylake architecture. The

best timings correspond to 1500 Gflop/s in sp, and 790 Gflop/s in dp.

would bridge. This is achieved through count ([go_x,go_y,go_z,go_t] .ne.0) or via a look-up
table which uses min(dir,82-dir), where dir is the direction count (from 1 to 81 in the nested
[go x,g0.y,g0-z,go_t] loop). Again, all contributions are accumulated in the thread-private
variable site(1:Nv,1:4,1:Nc), which is eventually written into the memory block of ¢y (1).
More details are provided in App. [C|

The timings of the Brillouin Laplace routine are listed in Tabs. [14], for the KNL and
Skylake architectures, respectively. On the KNL chip the vector layout is important; the layout
NvNsNc wins the contest. On the Skylake architecture the layouts NvNcNs, NvNsNc (with the
SIMD index rhs in front) are just slightly better than NcNsNv. Unlike with the Wilson Laplace
routine (see Tab. more threads yield higher performance; the table culminates in a whopping
1500 Gflops (for sp vectors) with 96 threads. In other words, this is the first operator for which
the dual-socket Skylake node delivers higher performance than a single KNL chip.

The scaling of the Brillouin Laplace routine (in sp and dp, for the NvNsNc layout) as a
function of the number of active threads is shown in Fig. [, The parameters, and the range
over which the number of threads is varied, are the same as in Secs. [4] On the KNL
architecture we find nearly perfect scaling behavior until every physical core hosts one thread.
A second thread per core brings modest improvement, while a third and fourth thread tend to
deteriorate performance. By contrast, on the Skylake architecture performance increases (both
in sp and dp) until the global maximum is reached near 96 threads.

The coding of the Brillouin Dirac operator proceeds analogous to , except that it
acts non-trivially in spinor space, too. These extra terms involve the “isotropic derivative”
which again leads to a 81-point stencil (with the contraction, for each p it is fewer points). To
maximize performance it pays to combine both gauge-field dependent terms in the Brillouin
Dirac operator, so that each Wy (n) is loaded once. Similar to the Brillouin Laplace sibling
routine, one uses a set of four nested loops (with variables go_x,go_y,go_z,go_t taking the
values —1,0,+1 each) to visit the 81 points m of 1), q(m) in the hypercube around n. Unlike
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Figure 5: Brillouin Dirac operator performance versus the number of threads in sp and dp, for

the KNL and the dual-socket Skylake architectures (same parameters as in Tab. [16)).
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single precision double precision
Nipr = 136 Nypyy = 272 | Ny = 136 Ny, = 272
NcNsNv 1.3264 1.2675 2.0097 2.6167
NvNcNs 1.1326 1.0912 2.0275 2.6740
NvNsNc 1.1265 1.1102 2.0228 2.5207

Table 16: Time in seconds per matrix times multi-RHS vector operation for the Brillouin
Dirac operator on the 68-core KNL architecture, with variables allocated in MCDRAM.
The lattice size is 34% x 68 with parameters N, = 3, N, = 12, and cgw = 0. The best timings
correspond to 880 Gflop/s in sp, and 480 Gflop/s in dp — see App. |[E]| for details.

single precision double precision
Nthr =24 Nthr == 48 Nthr - 96 Nthr =24 Nthr = 48 Nthr - 96
NcNsNv 1.6864 0.8700 0.7433 2.8651 1.5404 1.4205
NvNcNs 1.5488 0.8161 0.7262 2.7298 1.4811 1.3666
NvNsNc | 1.7860 0.9200 0.7426 2.7952 1.5275 1.4288
Table 17:  Same as Tab. [16{ but for the 2 x 24-core (dual socket) Skylake architecture. The

best timings correspond to 1320 Gflop/s in sp, and 700 Gflop/s in dp.

the Laplace term (which requires only knowledge abut the taxi-driver distance between m and
n) the derivative term combines the details of m — n with the detailed choice of the Dirac
matrix (in the code the chiral representation specified in App. [Alis used). All contributions are
accumulated in the thread-private variable site(1:Nv,1:4,1:Nc), which is eventually written
into the memory block of ¥y (n). More details are provided in App.

The timings of the Brillouin Dirac routine at csw = 0 are listed in Tabs. [16] [I7] for the KNL
and Skylake architectures, respectively. On the KNL chip the vector layouts NvNcNs, NvNsNc
(with the SIMD index rhs in front) yield best performance, with Ny, = 136 and Ny, = 272
virtually on par. On the Skylake architecture the layout NvNcNs seems slightly better than the
other two. The peak is at 96 threads, i.e. with all available threads on the dual-socket node.
Also for this operator the maximum performance available on the Skylake dual-socket node
(1320 Gflops) exceeds the best figure on the KNL node (880 Gflops) by 50%.

The scaling of the Brillouin Dirac routine (in sp and dp, for the NvNsNc layout) as a function
of the number of active threads is shown in Fig.[5] On the KNL we find (again) nearly perfect
scaling behavior until every physical core hosts one thread. The second thread still yields some
improvement, while the third and fourth threads per physical core deteriorate performance.
By contrast, on the Skylake architecture performance increases (both in sp and dp) until the
global maximum is reached at 96 threads. Apart from an overall vertical shift, the entire figure
looks like a carbon copy of Fig. 4| (a phenomenon encountered in Sec. , t00).

The main lesson from this section is that the Brillouin (Laplace and Dirac) operators have
a higher computational intensity than the Wilson (Laplace and Dirac) operators (see App. .
This lets the Brillouin operators (81-point stencil) benefit from the compute power of the second
socket in the Skylake node, while the Wilson operators (9-point stencil) barely do so.
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double precision
Nipr = 136 Ny = 272
0.0558 0.0506
0.0455 0.0429

single precision
Nipr = 136 Ny, = 272
0.0331 0.0306
0.0245 0.0237

NcNv
NvNc

Table 18: Time in seconds per matrix times multi-RHS vector operation for the staggered
Dirac operator on the 68-core KNL architecture, with all variables allocated in MCDRAM.
The lattice size is 34% x 68 with parameters N, = 3, N, = 12. The best timings correspond to
780 Gflop/s in sp, and 440 Gflop/s in dp — see App. |[E| for details.

single precision

Nipr =24 Ny =48 Ny = 96

double precision

Nipr =24 Ny =48 Ny = 96

NcNv
NvNc

0.0396
0.0342

0.0342
0.0340

0.0366
0.0363

0.0676
0.0649

0.0613
0.0612

0.0633
0.0633

Table 19: Same as Tab. [18 but for the 2 x 24-core (dual socket) Skylake architecture. The
best timings correspond to 550 Gflop/s in sp, and 300 Gflop/s in dp.

7 Susskind “staggered” Dirac routine

For a given V,(n) the Susskind (“staggered”) Dirac operator is defined as [2, 3]

Zm

with 771(”) =1, 772(”) = (_1)17 773(”) (_1>I+y’ 774(n) = (_1)x+y+z and n = (x,y,z,t). Here
V,.(n) represents a smeared version of the (original) gauge link U,(n), i.e. a gauge-covariant
parallel transporter from n + ji to n. Its main purpose is to reduce taste-symmetry breaking
[42,43], but there are more sophisticated alternatives with a larger stencil [44].

The main physics difference between the Susskind (“staggered”) action and previously dis-
cussed fermion actions is that the operator yields four species in the continuum, not just
one. Furthermore, the bare quark mass my gets multiplicatively renormalized only (for Wilson
and Brillouin fermions there is also an additive shift).

The action of the operator on a Susskind vector ¢ (internal color structure only) is

=2l

and our task is to implement a routine which performs this operation efficiently.

To prepare for his task, it helps to “downgrade” the Wilson Laplace routine (as discussed
in Sec. to the “staggered utility vector”, i.e. to remove the spinorial degrees of freedom
(which, in this case, were trivially acted on), and the resulting routine app_wsuv_{sp,dp} was
mentioned in footnote . In a similar vein, the Brillouin Laplace operator (as discussed in
Sec. @ can be “downgraded” to act on a “staggered utility vector”, and the resulting rou-
tine app_bsuv_{sp,dp} was mentioned in footnote 20| In either case, the six layout options
(among the internal degrees of freedom rhs,spi,col) collapse into two layout options (among

5n+u m

(Dso)(n n)p(n+ ) — Vi(n — p)o(n — )] + mod(n) (17)
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rhs,col). Starting from app_wsuv_{sp,dp}, it is easy to get the staggered routine; one just
insertsEr] the extra phase factors ny, 73, 74, where appropriate (17, = 1 is a constant).

The timings of the staggered Dirac routine are listed in Tabs. [1§] for the KNL and
Skylake architectures, respectively. On the KNL chip the layout NvNc outpaces the reverse
ordering, with a peak at 136 threads (both in sp and dp). On the Skylake node the difference
between the two layouts is marginal. Here 24 threads (one thread per physical core on one
socket) yield better performance than 48 or 96 threads. The relative strength of a single KNL
versus a dual-socket Skylake node is opposite to what we have seen with the Brillouin operator;
for the staggered operator the KNL chip outpaces the Skylake performance by about 40%.

The scaling of the staggered Dirac routine (in sp and dp, for the NvNc layout) as a function
of the number of active threads is shown in Fig. [(] On the KNL we find (again) nearly
perfect scaling behavior until every physical core hosts one thread. After a tiny dip, the second
thread yields minor improvement, whereas the third and fourth thread barely warrant the
extra scheduling cost (the dips in this figure reflect the OpenMP scheduling option static).
By contrast, on the Skylake architecture a local extremum is reached at 68 threads (i.e. one
thread per timeslice)). The flat structure after saturation at O(20) threads suggests the memory
bandwidth is the bottleneck on this architecture (similar to the Wilson case discussed in Sec. [5).

8 Dependence on compile-time parameters

The question behind this article is whether it is possible to write in a high-level language a
piece of code that yields decent performance for an arbitrary number of colors, N., number of
RHS, N,, and lattice volume N, x N, x N, x N;. In the following, we shall test whether this
design goal has been met. We restrict ourselves to the three Dirac operators Dy, Dg (both
at csw = 0) and Dg, in sp and with the best-performing layout on the KNL architecture, i.e.
NvNsNc and NvNc, respectively. The number of active threads is Ny, = 136 or Ny, = 272.

How the performance depends on the volume in lattice units, N, x N, x N, x Ny, is sum-
marized in Tab. 20] For all three operators the performance seems largely independent of the
volume, apart from a few minor dips (which may be influenced by some OS jitter).

In Tab. the dependence on the number of RHS, N,, is shown. The volume 243 x 48 is
fixed, and NV, is an integer multiple of N, = 3. For each Dirac operator the performance grows
initially with N,, reaching a maximum at N, = 24. Beyond this point performance degradesF_Z]
for Dw and Dg, while Dg stays more-or-less constant.

The dependence on N, may be discussed in two settings (both of which keep the volume
243 x 48 fixed). In Tab. 22| N, = 24 is kept fixed, and N, is taken to be an integer divisor of 24.
In Tab. 23| N, = 4N, scales with N.. In both casesF_g] performance grows with N, (apart from
a few minor dips) up to N, = 6, where it reaches a maximum for Wilson quarks, or N, = 8,
where the maximum for Brillouin and staggered fermions is found.

The main finding is that no “odd corners” with dramatically reduced performance are
detected. Just limiting the number of RHS to small numbers (say N, < 4) seems inadvisable;

21Tn some legacy lattice QCD codes, the gauge field V,,(n) is dressed with these factors. On modern architec-
tures, e.g. the KNL and Skylake processors used in this work, this does not buy an advantage any more.

22Recall that on the KNL chip the first 16 GB is allocated in MCDRAM, the remainder in DDR4 memory.

23The attentive reader may notice the N, = 6 rows of Tabs. [22| and [23| refer to the same situation (though
from different runs). Comparing them one finds that rounding results to multiples of 10 Gflop/s is reasonable.
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Wilson Brillouin Susskind
Nipr =136 Ny =272 | Ny = 136 Nigyy = 272 | Ny = 136 Ny = 272
L =16 460 440 800 710 630 620
L =20 480 480 820 740 760 830
L =24 490 470 850 770 790 780
L =32 410 440 760 660 730 690
L =140 470 470 830 810 730 710
L =148 380 400 790 740 670 670

Table 20: Performance in Gflop/s of the Wilson, Brillouin and Susskind routines in sp on the

KNL chip as a function of the volume L3 x T with T' = 2L, at fixed N, = 3, N,, = 12.

Wilson Brillouin Susskind
Nipr = 136 Ny = 272 | Nipe = 136 Ny = 272 | Ny = 136 Nyg,y = 272
N, = 1N, 240 270 190 280 210 240
N, = 2N, 430 450 530 670 380 460
N, = 4N, 480 450 840 720 770 780
N, =8N, 530 500 1050 710 1000 850
N, = 16N, 450 420 630 644 990 860
N, = 32N, 390 390 580 570 960 890

Table 21:  Performance in Gflop/s of the Wilson, Brillouin and Susskind routines in sp on the

KNL chip as a function of N,, at fixed volume 24* x 48 and N, = 3.

Wilson Brillouin Susskind
Nipr = 136 Nipy = 272 | Nipy = 136 Ny = 272 | Ny = 136 Ny,y = 272
N. =2 410 390 850 630 770 670
N.=3 520 500 1040 710 990 860
N.=4 540 530 910 830 1100 1010
N.=6 630 530 1030 1050 1160 1080
N. =38 610 400 1230 1210 1260 1090
N. =12 520 350 1280 910 720 870

Table 22: Performance in Gflop/s of the Wilson, Brillouin and Susskind routines in sp on the

KNL chip as a function of N,, at fixed volume 24* x 48 and N, = 24.

Wilson Brillouin Susskind
Nipr = 136 Ny = 272 | Niype = 136 Nipy = 272 | Ny = 136 Ny,y = 272
N.=2 460 400 840 700 640 550
N.=3 470 470 840 720 770 780
N.=4 480 500 920 830 960 830
N.=6 630 530 1030 1060 1180 1080
N, =38 570 400 1210 960 1260 1210
N. =12 410 310 880 780 1090 1130

Table 23:  Performance in Gflop/s of the Wilson, Brillouin and Susskind routines in sp on the

KNL chip as a function of N,, at fixed volume 24* x 48 with proportionality N, = 4N..
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this backs the arguments presented in Sec. [1| for pursuing a multi-RHS strategy. In summary,
the code seems fairly robust against changes of the volume, the number of RHS, and the number
of colors. It appears to be a useful tool for studying QCD at large N..

9 Krylov space inverters

We have all ingredients needed to compare the various vector layout options in an attempt to
tackle Eq. . Krylov-space solvers are iterative procedures to solve the system Au = b, for
a given RHS b, to a predefined tolerance €. The solver is stopped, as soon as the norm of the
residual » = b — Auw satisfies ||r|| < €][b||. In this article |[|.|| is taken to be the 2-norm, and the
stringent tolerance € = 107'2 (which can be reached in dp but not in sp) is used.

We aim to compare the vec-layouts for the Conjugate Gradient (CG) algorithm with one
of the hermitean positive definite (HPD) operators A = —%A“d + %mg, A= D\TNDW, A=
—sAM 4 Imdor A = DL Dg, as well as the BiCGstab algorithm with A = Dy or A = Dg
(which are neither hermitean nor anti-hermitean but s-hermitean). And we compare the suv-
layouts for the CG algorithm with the HPD operator A = DgDs. The bare mass amg = 0.01
is used for all operators; for Dyw and Dg it is combined with csw = 1. We use a quenched
24° x 48 configuration with @ ~ 0.9 fm, and N, = 12. The gauge field V,,(n) [from which F},,(n)
derives| is constructed from U, (n) via three steps of p = 0.12 stout smearing [38].

The solvers (CG and BiCGstab) are written in a generic way, i.e. they operate on vectors
with any of the six (two) layout options for Wilson-type (Susskind-type) Dirac operators. For
the matrix times vector operation they call a “wrapper” routine which eventually calls the
optimized routine for the specific layout (a similar statement holds w.r.t. the linear algebra
routines). The residual is “recomputed” (i.e. r = b — Au explicitly formed with u the current
approximation) rather than “updated” (via a cheaper vector-only operation), if one of the
following conditions is met: (i) the iteration count is an integer multiple of 20 in sp (50 in
dp), (i7) the updated residual r suggests that ||r||/||b]| < € might hold for each RHS, (éi7) the
maximum iteration count occurs. The routine exits if either ||r||/||b|| < € for each RHS (based
on the recomputed r = b — Au), or the discrepancy between the updated and actual residual
norm exceeds 1%, or the maximum iteration count is reached. To avoid excessively long log
files the relative norm is printed (and thus plotted) every ten iterations only. In this section
half of the maximum number of OpenMP threads is used on either architecture, i.e. Ny, = 136
on the KNL chip and Ny, = 48 on the Skylake node.

The CG history of A = —%A“d + %m% is shown in Fig.. On the KNL chip the layout
NcNsNv is slowest (+ symbol), NvNcNs is better (x symbol), and NvNsNc is best (filled boxes),
both in sp and dp. It is worth mentioning that the physics content of the RHS vector b is the
same for the three vector layouts, i.e. the memory content of b in NvNsNc is just a permuted
version of NcNsNv. The z-axis shows the time per RHS, the y-axis the worst of the N, relative
residual norms. In dp the target precision € = 107'2 is met after 109 iterations (for each layout
option), while in sp after 60 iterations the algorithm notices that the updated residual norm
|7||/1|b]] = 1.11 x 10~7 differs from the recomputed residual norm ||r||/||b|| = 3.12 x 107 by
more than 1%, and thus stopf?’] On the Skylake architecture the difference among the layouts
is gone, but the best overall time increases quite a bit (from 0.8 to 1.2s in dp).

241f one were to continue beyond this point, the recomputed residual norm would stagnate or grow.
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The CG history of A = D;DVDW is shown in Fig. On the KNL chip the layout NvNsNc
is the fasted one (both in sp and dp, plotted with filled symbols). In dp the target precision
e = 107'2 is met after 1858 iterations (for each layout option), while in sp after 620 iterations
the algorithm notices that the updated residual norm ||r||/||b]| = 1.69 x 10~° differs from the
recomputed residual norm ||r||/||b]| = 1.71 x 10~ by more than 1%, and thus stop’] On
the Skylake architecture the difference among the layouts is almost gone, but the best overall
execution time increases a bit (from 26s to 32s in dp).

The CG history of A = —3AP + 1m3 is shown in Fig.@ On the KNL chip the layout
NvNsNc is again the fastest one (both in sp and dp, plotted with filled symbols). In dp the
target precision € = 107'2 is met after 54 iterations (for each layout option), while in sp after
40 iterations the algorithm notices that the updated residual norm ||r||/||b|| = 5.46 x 1071°
differs from the recomputed residual norm ||r||/|b|| = 1.40 x 10~7 by more than 1%, and thus
stop@. No signs of numerical instability are seen; the six symbols at a given precision and
iteration count are just horizontally displaced from each other. On the Skylake architecture
the difference among the layouts is gone, while the best overall execution time is a bit shorter
than on the KNL (from 2.0s to 1.7s in dp).

The CG history of A = DL Dg is shown in Fig.. In dp the target precision € = 10712 is
met after 811 iterations (for each layout option), while in sp after 280 iterations the algorithm
notices that the updated residual norm [|r||/||b]| = 9.25 x 107% differs from the recomputed
residual norm ||r||/||b|| = 9.44 x 107° by more than 1%, and thus stops. Here the difference
among the three layout options is mild, and out of the KNL and Skylake architectures the
latter one fares significantly better (75s versus 58s in dp).

In Figs.[7H10 no sign of numerical imprecision is seen; the three symbols at a given iteration
count (for either sp or dp) are just horizontally displaced. A second issue is worth mentioning.
On the Skylake architecture the Brillouin operator converges in about twice the time of the
Wilson operator. The additive mass shift of the two Dirac operators is roughly in the same{ﬂ
ballpark. Thus the timings of Sec. |5{and Sec. @ (where Dg seemed about an order of magnitude
more expensive than Dy) do not represent the last word on the relative cost of these two
Dirac operators. The reason is the more compact eigenvalue spectrum of Dy [reaching up to
Re(z) = 24amy in the free field case] in comparison to Dy [which extends to Re(z) = 8+amy).
Hence at fixed pion mass, the matrix-vector cost explosion (in trading Dy for Dg) is mitigated
by a reduced condition number (see also the discussion in Refs. [16-18]).

The CG history of A = DgDs is show in Fig. (as usual adjacent boxes are separated
by ten iterations). On the KNL chip the layout NvNc (filled symbols) is faster than NcNv (open
symbols); on the Skylake architecture the difference is marginal. In dp the target precision
e = 107'% is met after 2489 iterations (for either layout), while in sp after 740 iterations the
algorithm notices that the updated residual norm ||r||/|[b]| = 6.95 x 107° differs from the
recomputed residual norm ||r||/[|b|| = 7.06 x 107> by more than 1%, and thus stops.

Fig.[12| shows the convergence history of the BiCGstab algorithm for Dwu = b. The descent
is “wigglier” than for the CG algorithm. The sensitivity of the BiCGstab algorithm to numerical

25The attentive reader may notice these figures are significantly larger than those mentioned in the discussion
of the CG histories of f%AStd + %m%. This suggests there is no universal tolerance that can be reached in sp;
the minimum ||r||/||b|| depends on the type of operator used and amg.

26Tn sp the third (fourth) box shows the updated (recomputed) relative residual norm at iteration 30 (40).

2TPreliminary spectroscopy on a handful of configurations suggests M ~ 760 MeV and MP™! ~ 670 MeV.

28Preliminary spectroscopy on a handful of configurations suggests M5 ~ 340 MeV.
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Figure 7: Relative residual norm versus time of the CG solver for the Wilson Laplacian at
amg = 0.01 on a 243 x 48 lattice in sp/dp (layout NvNsNc filled, other +, x) on the KNL and
Skylake node. In all cases the solver exits after 60 (109) iterations in sp (dp).
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Figure 8: Relative residual norm versus time of the CG solver for the Wilson DI,VDW at
amg = 0.01, cgw = 1 on a 24% x 48 lattice in sp/dp (layout NvNsNc filled, other +, x) on the
KNL and Skylake node. In all cases the solver exits after 620 (1858) iterations in sp (dp).
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Figure 9: Relative residual norm versus time of the CG solver for the Brillouin Laplacian at
amg = 0.01 on a 243 x 48 lattice in sp/dp (layout NvNsNc filled, other +, x) on the KNL and
Skylake node. In all cases the solver exits after 40 (54) iterations in sp (dp); cf. footnote
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Figure 10: Residual residual norm versus time of the CG solver for the Brillouin Dj,Dg at
amg = 0.01, cgw = 1 on a 24% x 48 lattice in sp/dp (layout NvNsNc filled, other +, x) on the
KNL and Skylake node. In all cases the solver exits after 280 (811) iterations in sp (dp).
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inaccuracy is visible; the six convergence histories in dp are not “horizontally stretched carbon
copies” of each other. As was true for the CG algorithm, with the Wilson kernel the convergence
on the KNL chip is a bit faster than on the Skylake architecture.

Fig.[I3] shows the convergence history of the BiCGstab algorithm for Dgu = b. The overall
characteristic is similar to the Wilson kernel, i.e. there are some wiggles, but they are not
dramatic (at this heavy pion mass). The main difference to the previous plot is the performance
ratio between the two architectures. As was true for the CG algorithm, with the Brillouin kernel
the convergence on the Skylake architecture is significantly faster than on the KNL chip. This
is good news for the suitability of the Brillouin Dirac operator in phenomenological studies on
architectures which are limited by memory bandwidth (cf. Refs. [1618]).

Overall, explicit Krylov space solve-for operations show that the vec-layout NvNsNc usually
fares best in terms of the total run-time. And among the suv-layouts NvNc beats NcNv. These
statements hold for to the KNL chip; on the Skylake node the time differences are marginal.
This matches the observations made in Secs. [}, [6] [7] for Dw, Dg, Ds, respectively. The linear
algebra rankings established in Sec. [3] are not crucial to the overall solver performance. Ac-
cordingly, if one were to upgrade the code into a distribution with hybrid parallelization (MPI
and OpenMP), one would restrict oneself to the NvNsNc and NvNc layouts, respectively.

As is well known [45-48] the descent of ||r|| in the sp-solver can be extended beyond the sp-
“limit” € ~ 1075 by wrapping the sp-solver into a simple dp-updater (e.g. Richardson iteration).
Such “mixed precision solvers” are standard in the lattice community, and the ancillary code
distribution contains a “mixed precision” version of each solver presented in this section.

10 Summary

The goal of this article has been to explore whether a “traditional” strategy of implementing
the Dirac-matrix times vector operation yields acceptable performance figures on many-core
architectures such as the KNL or modern successors. Here “traditional” means that the imple-
mentation uses a high-level language (e.g. Fortran 2008, also C/C++ could have done the job),
without assembly-tuning, and without cache-line optimization; only OpenMP shared-memory
parallelization and SIMD pragmas are used. Furthermore, the freedom to choose the data layout
is deliberately limited to the ordering of the internal degrees of freedom (color/spinor/RHS-
index). In this way, full portability of the code on CPU architectures is ensured.

On the KNL processor the SIMD-index must be the fastest (in Fortran: first) one, so the
layouts NvNcNs and NvNsNc are preferable for Wilson-type, and NvNc for Susskind-type vectors.
For the three Dirac operators studied (Wilson, Brillouin and Susskind) acceptable performance
figures are found. In sp, they are about 480 Gflop/s, 880 Gflop/s, and 780 Gflop/s, respectively,
on one 68-core KNL chip. On the 24-core Skylake architecture (tested in a dual-socket node)
the ordering of the internal degrees of freedom seems almost irrelevant, and the sp performance
figures for the three operators read 350 Gflop/s, 1320 Gflop/s, and 550 Gflop/s, respectively. In
dp these performance figures are roughly halved, but in practice the sp performance is more
relevant, since it determines the speed of a mixed-precision solver [45-48]. As an aside it was
demonstrated that the relative residual norm € = 1072 can be reached with dp vectors even if
the underlying gauge field is in sp, i.e. if the matrix-vector operation is vap <= Dap[Usp)tap-

Comparing the time-to-solution of a typical CG or BiCGstab inverter on the KNL and on
the Skylake node reveals an important difference between the Dirac operators considered. For
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Figure 12: Relative residual norm versus time of the BiCGstab solver for Dy at amy = 0.01,
csw = 1 on a 243 x 48 lattice in sp/dp (layout NvNsNc filled, other +, x) on the KNL and
Skylake node. In all cases the solver exits after 200 (~ 435) iterations in sp (dp).
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Figure 13: Relative residual norm versus time of the BiCGstab solver for Dy at amg = 0.01,
csw = 1 on a 243 x 48 lattice in sp/dp (layout NvNsNc filled, other +, x) on the KNL and
Skylake node. In all cases the solver exits after 140 (~ 322) iterations in sp (dp).
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the Wilson and the staggered Dirac operators (and the Wilson Laplacian) the KNL chip turns
out to be faster, for the Brillouin Dirac operator (and the Brillouin Laplacian) the Skylake node
is faster. This difference is linked to the computational intensity of these operators. The Wilson
operator uses between 0.89 and 1.53 flops/byte for N, = 3 (depending on the number of RHS,
see App. , the staggered numbers are similar. For Brillouin fermions these landmarks are
lifted to 2.21 and 3.83 flops/byte respectively (see App. . Hence, for operators with a large
enough computational intensity the Skylake architecture provides an advantage over KNL. The
Brillouin operator (11)) is in this category. The future will show whether it can take advantage
of the even higher compute-to-bandwidth ratios that future architectures will come with.

The code presented is limited in scope (restriction to shared-memory CPU environments),
yet it has unique features (like simple portability), owing to its structural simplicity and design
choices which aim to delegate all optimization work to the compiler. The author hopes that it is
useful to independent researchers in lattice QCD who want to run it, in farming mode, on small
institute clusters. An upgrade into a code base that is suitable to fill large allocations at present
and future HPC facilities requires major extensions (both offload capabilities to accelerators like
GPUs and multi-node parallelization via MPI need to be added). The author is determined to
explore wheter his can be done with the same standards of structural simplicity and hardware
independence, and — if successful — to release the result in a future publication.
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A Gamma matrices and Wilson projection trick

We employ the “chiral” or Weyl representation of the Euclidean ~-matrices

00 0 —i 0 00 —1
00 —i 0 0 01 0
i0 0 0 ~1 00 0
00 —i0 0010
00 0 i 0001
Bl o0 o0 o T2®% M=y g g o] T1®0%0; (18)
0 —i 0 0 0100

where the tensor-product notation uses the Pauli matrices

1 0 01 0 —i 1 0
0o = (0 1) ’ 01 = <1 O> 3 02 = (1 0) ) 03 = <O _1) ’ (19>

and the main feature of this representation is the diagonal form of

V5 = Y17Y2Y3Y4 = (02020201) ® (01020300) = (—io3) ® (iog) = diag(1,1,—1,—1) . (20)
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The Wilson Dirac operator (@ multiplies the contribution to the out-vector at site n that
comes from n + fi with Vi, (n) in color space and with $(1 £+,) in spinor space. A vector of
length 4N, (with the color index moving fastest) is thus multiplied by 3(1 +~,) ® Vi,(n), and
this is equivalent to the following procedure. Reshape the vector into a N X 4 matrix, multiply
it with Vi, (n) from the left and with (1 & ~,)"P from the right, and reshape the result back
into a column vector. In the right-multiplication we exploit that %(1 +1,) is a projector, and
that either associate eigenspace (to the eigenvalues 0 and 1, respectively) has dimension two.
This holds regardless of the representation used, and for each direction u.

Specifically, for the chiral representation the eigenvector decomposition takes the form

-1 0 i 0
1 1 1 0 1 1 0 1
1 _ppt Y ) — 00t wi _ L _ L
1 0 1 0
-1 0 1 0
1 1 1 0 1 1 0 1
1 _ppt 11— a)— 00t wi _ 1 _ 1
5(L+72) = PPl o(1—-)=QQ" with P Ao , Q 7 lo -1 (22)
1 0 1 0
01 0 1
1 1 1 1 0 —-i 0
Z — T2 — — i : _
2(1+73) PPT, 2(1 73) = QQ" with P 2 lo i 0o il &
10 1 0
0 -1 0 -1
1 1 1 1 0 1 1 0
Z — T2 — — T : - -
1 0 1 0

where P and () are unique up to arbitrary phases. Hence, the following order of operations
saves CPU time. First act with v/2P* from the right, next multiply the resulting N, x 2 matrix
with 1V, (n) from the left, and finally right-multiply with v/2P'"*P. This holds for any u > 0;
for a negative p simply replace P by the respective Q).

Lattice practitioners refer to this procedure as the “spin projection trick” or “shrink expand
trick”, but it is sparsely documented in the literature (notable exceptions include Refs. [49,/50]).
On a distributed memory machine, there is an obvious lemma. In case the spinor is part of a
halo component which is to be communicated to another MPI rank, the first right-multiplication
(by a 4 x 2 matrix) is done prior to sending, the second one (by a 2 x 4 matrix) after receipt.
This way the number of bits to be communicated is reduced by a factor two (applicable, again,
for all directions £4x). Finally, the left-multiplication with the color-matrix V,,(n) is done in
the node where the latter resides (i.e. prior to sending for u < 0, and after receipt for u > 0).
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Using the tensor notation it is easy to write down the matrices o, = %[’yﬂ, Yl, viz.

012 = %[‘72@)01,02@02]_%U%(X)[Ulagﬂ_%UO®+21‘73__00®03’
o3 = %[02 ® 01,09 ® 03] = %ag ® [o1, 03] = %00 ® —2i09 = 409 ® 09 ,
ol = %[02@)01,01@00] :%[0201@)0100—0102@0001] =+038 01,
023 = %[‘72 ® 09,00 ® 03] = %‘73 ® [02, 03] = %UO ® +2i01 = —09 @ 01 ,
094 = %[02@)02,01@00] = %[0201@)0200—0102@0002] = +038 02,
O34 = %[gg R 03,01 ® 0¢] = %[0201 ® 0300 — 0109 ® 003 = +03 ® 03, (25)

and this explicit form is used in the clover routine, see Sec. [4]

B Details of the Wilson Laplace and Dirac routines

The structure of the Wilson Laplace routine for the vector layout NvNsNc is

I$0MP PARALLEL DO COLLAPSE(2) DEFAULT(private) FIRSTPRIVATE(mass) SHARED(old,new,V)
do t=1,Nt

do z=1,Nz; z_min=... ; z_plu=... ; t_min=modulo(t-2,Nt)+1; t_plu=modulo(t,Nt)+1
do y=1,Ny; y_min=... ; y_plu=...
do x=1,Nx; x_min=... ; x_plu=...

!1! direction O gets mass term

do concurrent(col=1:Nc,spi=1:4,rhs=1:Nv)
site(rhs,spi,col)=(8.0+mass**2)*0ld(rhs,spi,col,x,y,z,t)

end do

11! add contributions from -4 and +4 directions

do concurrent(ccc=1:Nc,spi=1:4)

'$0MP SIMD
do rhs=1,Nv
site(rhs,spi,:)-=conjg(V(ccc,:,4,x,y,z,t_min))*o0ld(rhs,spi,ccc,x,y,z,t_min)
site(rhs,spi,:)-= V(:,ccc,4,x,y,2,t ) *0ld(rhs,spi,ccc,x,y,z,t_plu)
end do
end do

'l plug site into new vector
forall(col=1:Nc,spi=1:4,rhs=1:Nv) new(rhs,spi,col,x,y,z,t)=0.5*site(rhs,spi,col)
end do ! x=1,Nx
end do ! y=1,Ny
end do ! z=1,Nz
end do ! t=1,Nt
I$OMP END PARALLEL DO

where we use a Fortran inspired notation. The variables old,new,V are shared among the
threads, while mass is copied from the master thread at the bifurcation point. In a serial code
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the variables t min, t_plu would be computed in the first line within the ¢-loop. The clause
COLLAPSE(2) forces us to transfer these statements into the z-loop. In the same line the clause
SCHEDULE (static) may be added to enforce compile-time thread scheduling. In Fortran the

notation site-=... is wishful thinking; it is site=site-... properly spelled out. Within the
SIMD loop the stride notation establishes an implicit forall(col=1:Nc) ... construct, which
is a one-line version of do concurrent(col=1:Nc); ...; end do. Taking everything together

we thus have eight nested loops. The line with dots only indicates that the other six directions
are implemented analogously. In Fortran this routine must be implemented separately for each
layout NcNsNv, NsNcNv, NcNvNs, NvNcNs, NsNvNc, NvNsNc, and for old,new being sp or dp.
Finally, a “wrapper routine” may be written to call them in a more convenient way.

The structure of the Wilson Dirac routine (@ for the vector layout NvNsNc is the same,
except minor differences. The initialization of site uses the factor (8.0+2.0%*mass), since
there is a factor 0.5 in the end. The most significant change is due to the “Wilson projection
trick” discussed in App. [A] For the F4 directions the respective lines above are replaced by

do ccc=1,Nc
'$0MP SIMD PRIVATE(red,obj)

do rhs=1,Nv
red(1)=o0ld(rhs,1,ccc,x,y,z,t_min)+ old(rhs,3,ccc,x,y,z,t_min)
red(2)=o0ld(rhs,2,ccc,x,y,z,t_min)+ old(rhs,4,ccc,x,y,z,t_min)
red(3)=o0ld(rhs,1,ccc,x,y,z,t_plu)- old(rhs,3,ccc,x,y,2z,t_plu)
red(4)=o0ld(rhs,2,ccc,x,y,z,t_plu)- old(rhs,4,ccc,x,y,z,t_plu)
forall(col=1:Nc,spi=1:2) obj(spi,col)=red(spi)*conjg(V(ccc,co0l,4,x,y,z,t_min))
forall(col=1:Nc,spi=3:4) obj(spi,col)=red(spi)* V(col,ccc,4,x,y,2,t )
site(rhs,1,:)=site(zhs,1,:)- (obj(1,:)+0obj(3,:))
site(rhs,2,:)=site(rhs,2,:)- (obj(2,:)+obj(4,:))
site(rhs,3,:)=site(rhs,3,:)- (obj(1,:)-0bj(3,:))
site(rhs,4,:)=site(rhs,4,:)- (obj(2,:)-0obj(4,:))

end do

end do

and similarly for the other directions. The blank spaces mark positions where factors i_sp*
would show up for some of the other directions (with details depending on the choice of the
Dirac matrices, see App. . Beyond this there is no change.

Overall, these implementations are compellingly simple, and it is perhaps a little surprising
to the expert that such simple routines can yield the timings reported in Sec. [5]

C Details of the Brillouin Laplace and Dirac routines

The structure of the Brillouin Laplace routine for the vector layout NvNsNc is

I$0MP PARALLEL DO COLLAPSE(3) DEFAULT(private) FIRSTPRIVATE(mass) SHARED(old,new,W)
do t=1,Nt
do z=1,Nz
do y=1,Ny
do x=1,Nx
site(:,:,:)=cmplx(0.0,kind=sp)
! add laplacian parts to site
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dir=0
do go_t=-1,1; tsh=modulo(t+go_t-1,Nt)+1
do go_z=-1,1; zsh=modulo(z+go_z-1,Nz)+1
do go_y=-1,1; ysh=modulo(y+go_y-1,Ny)+1
do go_x=-1,1; xsh=modulo(x+go_x-1,Nx)+1
dir=dir+1 !!! note: dir=(go_t+1)*27+(go_z+1)*9+(go_y+1)*3+(go_x+2)
if (dir<41) then
tmp(:, :)=mask_lap( dir)*W(:,:,dir,x,y,z,t)
else if (dir>41) then
tmp(:,:)=mask_lap(82-dir)*conjg(transpose(W(:,:,82-dir,xsh,ysh,zsh,tsh)))
else
tmp(:,:)=(1.875+0.5*mass**2)*xeye(:,:)
end if
do ccc=1,Nc
I$0MP SIMD PRIVATE (help)

do rhs=1,Nv
help(:)=o0ld(rhs,:,ccc,xsh,ysh,zsh,tsh)
do col=1,Nc
site(rhs,:,col)=site(rhs,:,col)-help(:)*tmp(col,ccc)
end do
end do
end do
end do ! go_x=-1,1
end do ! go_y=-1,1
end do ! go_z=-1,1
end do ! go_t=-1,1

1! plug site into new vector
forall(col=1:Nc,spi=1:04,rhs=1:Nv) new(rhs,spi,col,x,y,z,t)=site(rhs,spi,col)
end do ! x=1,Nx
end do ! y=1,Ny
end do ! z=1,Nz
end do ! t=1,Nt
I$0MP END PARALLEL DO

where the variables 01d,new, W are shared among the threads, while mass is copied from the mas-
ter thread at the bifurcation point. The clause SCHEDULE (dynamic) may be added to this line to
enforce run-time thread scheduling. The four nested go loops organize the harvesting within the
3% hypercube around the point n = (z,¥, 2,t) of ¥new(n). The factors (%)\1, %/\27 %)\3, 1) are
stored in mask_lap(1:40); this is faster than evaluating count ([go_x,go_y,go-z,go_t] .ne.0)
and accessing a table with just four elements. The factor %)\0 + %m% multiplies the N, x N, iden-
tity matrix stored in eye(1:Nc,1:Nc). Within the SIMD loop there is an explicit color-loop,
and the stride-notation establishes an implicit forall (spi=1:04) construct. Taking everything
together we thus have twelve nested loops.

The structure of the Brillouin Dirac routine for the vector layout NvNsNc is the same,
except minor differences. The factor mask lap(min(dir,82-dir)) is not included in tmp but
stored in the variable 1ap. The variable absgo_xyzt is loaded from an array mask_absgo (1:40),
since this is faster than evaluating count([go x,go_y,go_z,go _t].ne.0). In fact, with this
variable in hand, one can take lap from an array mask lap(0:4). Similarly, the derivatives are
put together from an array mask der(-1:1,0:4). Hence, the ccc loop above is replaced by
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lap=mask_lap(absgo_xyzt)
der_tz=cmplx(mask_der(go_t,absgo_xyzt) ,mask_der(go_z,absgo_xyzt) ,kind=sp)
der_yx=cmplx (mask_der(go_y,absgo_xyzt) ,mask_der(go_x,absgo_xyzt) ,kind=sp)
do ccc=1,Nc

'$0MP SIMD PRIVATE(myold,help)

do rhs=1,Nv
myold(:)=o0ld(rhs,:,ccc,xsh,ysh,zsh,tsh)
help(1)=-lap*myold(1)+conjg(der_tz)*myold(3)- der_yx *myold(4)
help(2)=-lap*myold(2)+conjg(der_yx)*myold(3)+ der_tz *myold(4)
help(3)=-lap*myold(3)+ der_tz *myold(1)+ der_yx *myold(2)
help(4)=-lap*myold(4)-conjg(der_yx)*myold(1l)+conjg(der_tz)*myold(2)
do col=1,Nc

site(rhs,:,col)=site(zrhs,:,col)+help(:)*tmp(col,ccc)

end do

end do

end do

and taking everything together, we end up with a set of twelve nested loops.
Overall, these implementations are fairly straightforward. The timings of these routines, for
N. =3 and N, = 12 on a 343 x 68 lattice, are discussed in Sec. @

D Details of the Susskind “staggered” Dirac routine

The structure of the staggered Dirac routine for the layout NvNc is

!$0MP PARALLEL DO DEFAULT(private) FIRSTPRIVATE(mass) SHARED(old,new,V)

do t=1,Nt; t_min=...; t_plu=...; etad4=1.000

do z=1,Nz; z_min=...; z_plu=...; etad=-etad; eta3=1.000

do y=1,Ny; y_min=...; y_plu=...; etad=-eta4d; eta3=-eta3; eta2=1.000
do x=1,Nx; x_min=...; x_plu=...; etad=-etad; eta3=-eta3d; eta2=-eta2

1! direction O gets mass term

forall(col=1:Nc,rhs=1:Nv) site(rhs,col)=(2.0*mass)*o0ld(rhs,col,x,y,z,t)
11l add non-trivial directions

do ccc=1,Nc

1$0MP SIMD
do rhs=1,Nv
site(rhs, :)-=etad*conjg(V(ccc,:,4,x,y,2,t_min))*old(rhs,ccc,x,y,z,t_min)
site(rhs, :)+=etadx V(:,ccc,4,x,y,2,t ) *0ld(rhs,ccc,x,y,z,t_plu)
end do
end do

11! plug site into new vector
forall(col=1:Nc,rhs=1:Nv) new(rhs,col,x,y,z,t)=0.5_sp*site(rhs,col)
end do ! x=1,Nx
end do ! y=1,Ny
end do ! z=1,Nz
end do ! t=1,Nt
I$OMP END PARALLEL DO
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where the variables old,new,V are shared among the threads, while mass is copied from the
master thread at the bifurcation point. In the actual code there is the clause COLLAPSE(3)
in the PARALLEL DO construct, and this delays the initialization of eta3,eta4 by one or two
loops, respectively. In the same line the clause SCHEDULE (static) is added to enforce compile-
time thread scheduling. The line with dots only indicates that the other six directions are
implemented analogously. In the end, the variable site(1:Nv,1:Nc) is written, with a factor
1

3» into the respective field of new. Within the SIMD loop the stride notation establishes an

implicit forall(col=1:Nc) construct. In total there are thus seven nested loops.

E Flop count and memory traffic details

It is common practice to count the number of additions and multiplications, coined “floating-
point operations” (flop). In view of the capabilities of modern processors it would make sense
to count fused-multiply-add operations, but for backward compatibility everyone adopts the
traditional counting rule. Hence a complex-plus-complex addition takes 2 flops, a real-times-
complex multiplication takes 2 flops, and a complex-times-complex multiplication takes 6 flops.
Accordingly, a SU(N.) left-multiplication of a N, x 4 Dirac spinor takes N? x 4 multiplications
and N.(N,—1) x 4 additions, which amounts to [8N? — 2N, x 4 flops. Based on this we arrive
at the following flop counts for the operators considered in this article.

E.1 Wilson Laplace operator
A matrix-vector operation with the hpd operator —%A“d + %m% proceeds as follows:

(i) SU(N.)-multiply the N, x 4 block for each direction. In this step we assume the prefactor

—% is included into the local copy of V,(n) and thus consider it for free. Overall, this

takes [SN? — 2N,] - 4 - 8 flops.
(ii) Accumulate these 8 terms, as well as the 0-hop contribution which is multiplied with the
precomputed factor (4 + %m%) Overall, this takes 2N, - 4 - 9 flops.

All together we have a grand total of 256 N? + 8 N,. flops per site, or 2328 flops for SU(3).
Here we assume the vector has the same spinor®color structure per lattice site as for the
Wilson Dirac operator (see . In the event the vector has no spinor degree of freedom, the
flop count is four-fold reduced, i.e. 64N? + 2N, flops per site, or 582 for SU(3).
In addition, the following memory access operations are due (per site, for one RHS):

(i) Read one color-spinor object for each point of the 9-point stencil from the “in” vector;
this requires 2N, - 4 - 9 floats (doubles) in sp (dp).

(ii) Read one SU(N,) matrix®| (in this code suite always in sp, cf. the discussion in Sec.
per direction; this requires 2N? - 8 floats.

(iii) Write one color-spinor object to the “out” vector; this requires 2N, - 4 floats (doubles) in
sp (dp).

29Based on unitarity, one could omit the last row or column, and reconstruct it “on the fly”; this reduces the
load to 2N (N, — 1) - 8 floats. This does usually pay off for N. = 3 but barely so for higher N, and this is why
no gauge compression is used in this code. Using the matrix “exp” and “log” functions, one could even reduce
this number to (N2 — 1) - 8 floats, but the latter function is tricky to implement (for arbitrary N..).
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With several RHS, the memory footprint in (i) and (iii) is multiplied by N,, while (ii) stays
unchanged. All together we thus arrive at 80NN, + 16N? floats of traffic per site in sp (the
number in dp follows by replacing N, — 2N,)). For N, = 3, N,, = 1 the 2328 flops and 384 floats
per site amount to a computational intensity of 1.52 flops/byte in sp. For N, = 3, N, = 12
the 27936 flops and 3024 floats per site yield 2.31 flops/byte in sp. Increasing N, increases the
computational intensity, but there is an asymptotic bound of (256 N>+8N.,.)/(320N..) flops/byte
in sp for N, — oo, which evaluates to 2.42 flops/byte for N. = 3.

E.2 Wilson Dirac operator

A matrix-vector operation with the Wilson Dirac operator Dy proceeds as follows:

(i) Spin project (from 4 to 2 components) the V. x 4 matrix for each direction. Overall, this
takes N, -4 -8 flops.

(ii) SU(N.)-multiply the N. x 2 block for each direction, and expand it back to the N, x 4
format (for free). Overall, this takes [SN? — 2N,] -2 - 8 flops.

(iii) Accumulate these 8 terms, as well as the 0-hop contribution which uses the precomputed
factor (4 + myg). Overall, this takes 2N, - 4 - 9 flops.

All together we have a grand total of 128 N? + 72N, flops per site, or 1368 flops for SU(3).

In the older literature a different normalization of the Dirac operator was used, where the
factor (44 my) is absent. In this case only 2N, -4 - 8 flops are spent in step (iii), and the grand
total amounts to 128 N2 + 64N, flops, or 1344 flops for SU(3). Sometimes the Dirac operator
without the 0-hop contribution is considered. In this case step (iii) uses only 2V, - 4 - 7 flops,
and the grand total amounts to 128N? + 56 N, flops, or 1320 flops for SU(3).

In addition, for a matrix-vector operation we must perform the same memory operations as
for the Wilson Laplace operator, see This was 80N, N, + 16 N? floats of traffic per site in sp
(in dp the first term doubles). For N. = 3, N,, = 1 the 1368 flops and 384 floats per site amount
to a computational intensity of 0.89 flops/byte in sp. For N, = 3, N,, = 12 the 16416 flops and
3024 floats per site yield 1.36 flops/byte in sp. Again increasing N, increases the computational
intensity, but there is an asymptotic bound of (128 N? + 72N..)/(320N.) flops/byte in sp for
N, — oo, which evaluates to 1.53 flops/byte for N, = 3.

E.3 Brillouin Laplace operator

A matrix-vector operation with the hpd operator —%Abri + %m% proceeds as follows:

(i) SU(N.)-multiply the N, x 4 block for each of the 80 non-trivial directions. Overall, this
takes [SN? — 2N,] - 4 - 80 flops.

(ii) Multiply the resulting N, x4 matrix for 81 directions with the weight factor as given by the
Brillouin Laplacian. This weight factor is real, and the mass term may be incorporated
into the O-hop contribution of the Laplacian. Overall, this takes N, -4 -2 - 81 flops.

(iii) Accumulate the 81 contributions to the out-spinor. Overall, this takes 2N.. - 4 - 80 flops.

All together we have a grand total of 2560N?2 + 648 N,. flops per site, or 24984 flops for SU(3).
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Here we assume the vector has the same spinor®color structure per lattice site as for the
Brillouin Dirac operator (see . In the event the vector has no spinor degree of freedom, the
flop count is four-fold reduced, i.e. 640N? + 162N, flops per site, or 6246 for SU(3).

In addition, for a matrix-vector operation we must (per site, for one RHS):

(i) Read one color-spinor object for each point of the 81-point stencil from the “in” vector;
this requires 2V, - 4 - 81 floats (doubles) in sp (dp).

(ii) Read one complex N. x N, matrix’'| (in this code suite always in sp, cf. the discussion in
Sec. [2)) per non-trivial direction; this requires 2 - N2 - 80 floats.

(iii) Write one color-spinor object to the “out” vector; this requires 2N, - 4 floats (doubles) in
sp (dp).

With several RHS, the memory footprint in (i) and (iii) is multiplied by N,, while (ii) stays
unchanged. All together we thus arrive at 656 N.N,, + 160N? floats of traffic per site in sp (the
number in dp follows by replacing N, — 2N,). For N, = 3, N, = 1 the 24984 flops and 3408
floats per site amount to a computational intensity of 1.83 flops/byte in sp. For N, = 3, N, =
12 the 299808 flops and 25056 floats per site yield 2.99 flops/byte in sp. Again increasing
N, increases the computational intensity, but there is an asymptotic bound of (2560N?2 +
648N.)/(2624N,.) flops/byte in sp for N, — oo, which evaluates to 3.17 flops/byte for N, = 3.

E.4 Brillouin Dirac operator

A matrix-vector operation with the Brillouin Dirac operator Dg proceeds as follows:

(i) SU(N.)-multiply the N, x 4 block for each of the 80 non-trivial directions. Overall, this
takes [8N? — 2N,] - 4 - 80 flops.

(ii) Multiply the resulting N. x 4 matrix with the weight factors as given by the isotropic
derivatives and the Brillouin Laplacian. These weight factors are either real or purely
imaginary, and for each Vifo non-zero only for 54 out of the 81 directions. The mass term
may be incorporated into the 0-hop contribution of the Laplacian. Overall, this takes
2N, -4-(4-54 +81) flops.

(iii) Accumulate the 81 contributions to the out-spinor. Overall, this takes 2N, - 4 - 80 flops.

All together we have a grand total of 2560N?2 + 2376 N,. flops per site, or 30168 flops for SU(3).

In addition, for a matrix-vector operation we must perform the same memory operations
as for the Brillouin Laplace operator, see This was 656 N,N,, + 160N? floats of traffic per
site in sp (in dp the first term doubles). For N, = 3, N, = 1 the 30168 flops and 3408 floats
per site amount to a computational intensity of 2.21 flops/byte in sp. For N, = 3, N, = 12 the
362016 flops and 25056 floats per site yield 3.61 flops/byte in sp. Again increasing N, increases
the computational intensity, but there is an asymptotic bound of (2560N?2 4 2376 N,.)/(2624N,)
flops/byte in sp for N, — oo, which evaluates to 3.83 flops/byte for N, = 3.

30For 36 of the 40 stored directions this matrix is not unitary; compare the caption of Tab.
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E.5 Susskind “staggered” Dirac operator

In terms of the flop count a matrix-vector operation with the “staggered” Dirac operator Dg
mimics an application of the Wilson Laplacian on a scalar argument (see . The staggering
brings factors of —1, which are considered for free, and the center-point of the stencil is multi-
plied by mg rather than by 4 + %m%, but this does not affect the flop count either. The final
result is thus still 64N? + 2N, flops per site, or 582 flops for SU(3).

Also the memory requirement is a quarter of the number given in , i.e. 20NN, + 4N?
floats of traffic per site in sp (the first term doubles in dp) with N, RHS. The computational
intensity is thus (64N2N, + 2N.N,)/(80N.N, + 16N?) flops/byte in sp. For N, = 3, N, = 1
this yields (64N, + 2)/(80 + 16N,.) ~ 1.52 flops/byte in sp. For N. = 3, N, = 12 this yields
(T68N, + 24)/(960 + 16N,.) ~ 2.31 flops/byte in sp. The asymptotic bound for N, — oo is
again (64N? + 2N,)/(80N,) flops/byte in sp, which evaluates to 2.42 flops/byte for N. = 3.

E.6 Clover improvement operator
A matrix-vector operation with (4 [5)), using the precomputed F),,(n), proceeds as follows:
(i) SU(N.)-multiply the N. x 4 block for any of the 6 clover orientations (specified by 1 <
pu < v < 4) at the given space-time position. Overall, this takes [SN? — 2N,] - 4 - 6 flops.

(ii) Add the 6 contributions per color and spinor index to the out-vector (here we use that each
0, has one non-zero entry in spinor space per row or column; factors of i are considered
for free). Overall, this takes 2V, - 4 - 6 flops.

All together we have a grand total of 192N? flops per site, or 1728 flops for SU(3).

In the interest of speed the special properties of the ¢, matrices can be exploited (see
App. . Ignoring the numerical effort to form the linear combinations of the F),, matrices
(justified for large enough N.), the effective number of SU(N,)-multiplications is reduced to
two. In this case one ends up with [8N2 — 2N,] - 4 - 2 flops under (i), and 2N, - 4 - 2 flops
under (ii). All together this yields a grand total of 64N? flops per site, or 576 flops for SU(3).
The ancillary code distribution uses this trick, and hence the smaller number when a timing
information is converted to a Gflop/s figure for the clover routine or for Dy, D at cgw > 0.

References

[1] K. G. Wilson, Phys. Rev. D 10, 2445-2459 (1974), do0i:10.1103/PhysRevD.10.2445.

[2] J. B. Kogut and L. Susskind, Phys. Rev. D 11, 395-408 (1975), doi:10.1103/PhysRevD.
11.395.

[3] L. Susskind, Phys. Rev. D 16, 3031-3039 (1977), doi:10.1103/PhysRevD.16.3031.

[4] M. R. Hestenes and E. Stiefel, J. Res. Nat. Bur. Stand. 49, 409-436 (1952), doi:10.6028/
jres.049.044.

[5] H. A. Van der Vorst, SIAM J. Sci. Stat. Comput. 13, 631-644 (1992), doi:10.1137/0913035.

[6] Y. Saad, “Iterative Methods for Sparse Linear Systems” (2nd ed.), STAM (1992/2003),
doi:10.2277/0898715342.

[7] M. Luscher, [arXiv:1002.4232 [hep-lat]].

48



8]
[9]
[10]
[11]

[12]

I. Dasgupta, A. Ruben Levi, V. Lubicz and C. Rebbi, Comput. Phys. Commun. 98, 365-397
(1996), doi:10.1016/0010-4655(96)00103-8 [arXiv:hep-lat/9605012 [hep-lat]].

L. Del Debbio, L. Giusti, M. Luscher, R. Petronzio and N. Tantalo, JHEP 02, 056 (2007),
doi:10.1088/1126-6708/2007/02/056 [arXiv:hep-lat /0610059 [hep-lat]].

L. Del Debbio, L. Giusti, M. Luscher, R. Petronzio and N. Tantalo, JHEP 02, 082 (2007),
doi:10.1088/1126-6708/2007/02/082 [arXiv:hep-lat /0701009 [hep-lat]].

I. Campos et al. [RC*], Eur. Phys. J. C 80, no.3, 195 (2020), doi:10.1140/epjc/s10052-
020-7617-3 [arXiv:1908.11673 [hep-lat]].

M. Bach, V. Lindenstruth, O. Philipsen and C. Pinke, Comput. Phys. Commun. 184,
2042-2052 (2013) doi:10.1016/j.cpc.2013.03.020 [arXiv:1209.5942 [hep-lat]].

A. Bazavov et al. [Fermilab Lattice and MILC], Phys. Rev. D 90, no.7, 074509 (2014),
d0i:10.1103/PhysRevD.90.074509 [arXiv:1407.3772 [hep-lat]].

P. Boyle, A. Yamaguchi, G. Cossu and A. Portelli, [arXiv:1512.03487 [hep-lat]].

L. Altenkort, D. Bollweg, D. A. Clarke, O. Kaczmarek, L. Mazur, C. Schmidt, P. Scior
and H. T. Shu, [arXiv:2111.10354 |hep-lat]].

S. Durr and G. Koutsou, Phys. Rev. D 83, 114512 (2011), doi:10.1103/PhysRevD.83.
114512 [arXiv:1012.3615 [hep-lat]].

S. Durr, G. Koutsou and T. Lippert, Phys. Rev. D 86, 114514 (2012), do0i:10.1103/PhysRev
D.86.114514 [arXiv:1208.6270 [hep-lat]].

S. Durr and G. Koutsou, [arXiv:1701.00726 [hep-lat]].

P. Majumdar, J. Phys. Conf. Ser. 759, no. 1, 012070 (2016), doi:10.1088/1742-6596/759/1/
012070.

P. A. Boyle, PoS LATTICE 2016, 013 (2017), doi:10.22323/1.256.0013 [arXiv:1702.00208
[hep-lat]].

A. Rago, EPJ Web Conf. 175, 01021 (2018), doi:10.1051/epjconf/201817501021 [arXiv:
1711.01182 [hep-lat]].

M. Lin, plenary talk at Lattice 2018 (unpublished).
E. Gregory, PoS LATTICE 2019, 205 (2020), doi:10.22323/1.363.0205.

P. Arts et al., PoS LATTICE 2014, 021 (2015), doi:10.22323/1.214.0021 [arXiv:1502.04025
[cs.DC]].

S. Heybrock, M. Rottmann, P. Georg and T. Wettig, PoS LATTICE2015, 036 (2016),
d0i:10.22323/1.251.0036 [arXiv:1512.04506 [physics.comp-ph]].

D. Richtmann, S. Heybrock and T. Wettig, PoS LATTICE2015, 035 (2016), doi:10.
92323/1.251.0035 [arXiv:1601.03184 [hep-lat]].

H. Kobayashi, Y. Nakamura, S. Takeda and Y. Kuramashi, PoS LATTICE 2015, 029
(2016), doi:10.22323/1.251.0029.

T. Boku, K. I. Ishikawa, Y. Kuramashi, L. Meadows, M. D‘Mello, M. Troute and R. Vemuri,
PoS LATTICE 2016, 261 (2016), doi:10.22323/1.256.0261 [arXiv:1612.06556 [hep-lat]].

C. DeTar, D. Doerfler, S. Gottlieb, A. Jha, D. Kalamkar, R. Li and D. Toussaint, PoS
LATTICE 2016, 270 (2016), doi:10.22323/1.256.0270 [arXiv:1611.00728 [hep-lat]].

49



[30]

[31]
[32]

[33]
[34]
[35]
[36]
[37]
[38]
[39]
[40]
[41]
[42]
[43]

[44]
[45]

[48]

[49]
[50]

C. DeTar, S. Gottlieb, R. Li and D. Toussaint, EPJ Web Conf. 175, 02009 (2018),
doi:10.1051/epjconf/201817502009 [arXiv:1712.00143 [hep-lat]].

I. Kanamori and H. Matsufuru, [arXiv:1712.01505 [hep-lat]].

I. Kanamori and H. Matsufuru, LNCS 10962, 456-471 (2018), doi:10.1007/978-3-319-95168-
3.31 [arXiv:1811.00893 [hep-lat]].

C. Alappat, N. Meyer, J. Laukemann, T. Gruber, G. Hager, G. Wellein and T. Wettig,
[arXiv:2103.03013 [cs.PF]].

K. I. Ishikawa, [. Kanamori, H. Matsufuru, I. Miyoshi, Y. Mukai, Y. Nakamura, K. Nitadori
and M. Tsuji, [arXiv:2109.10687 [hep-lat]].

Y. Akahoshi, S. Aoki, T. Aoyama, I. Kanamori, K. Kanaya, H. Matsufuru, Y. Namekawa,
H. Nemura and Y. Taniguchi, [arXiv:2111.04457 |[hep-lat]].

S. Durr, EPJ Web Conf. 175, 02001 (2018), doi:10.1051/epjconf/201817502001 [arXiv:
1709.01828 [hep-lat]].

S. Durr, PoS LATTICE 2018, 033 (2018), doi:10.22323/1.334.0033 [arXiv:1808.05506 [hep-
lat]].

C. Morningstar and M. J. Peardon, Phys. Rev. D 69, 054501 (2004), doi:10.1103/Phys
RevD.69.054501 [arXiv:hep-lat/0311018 [hep-lat]].

B. Sheikholeslami and R. Wohlert, Nucl. Phys. B 259, 572 (1985) doi:10.1016/0550-
3213(85)90002-1

S. Aoki and Y. Kuramashi, Phys. Rev. D 68, 094019 (2003) doi:10.1103/PhysRev
D.68.094019 [arXiv:hep-lat/0306015 [hep-lat]].

M. Luscher, S. Sint, R. Sommer and P. Weisz, Nucl. Phys. B 478, 365-400 (1996)
doi:10.1016,/0550-3213(96)00378-1 [arXiv:hep-lat/9605038 [hep-lat]].

T. A. DeGrand [MILC], Phys. Rev. D 60, 094501 (1999) doi:10.1103/PhysRevD.60.094501
[arXiv:hep-lat /9903006 [hep-lat]].

K. Orginos et al. [MILC], Phys. Rev. D 60, 054503 (1999) doi:10.1103/PhysRevD.60.
054503 [arXiv:hep-lat/9903032 [hep-lat]].

G. P. Lepage, Phys. Rev. D 59, 074502 (1999) doi:10.1103/PhysRevD.59.074502

L. Giusti, C. Hoelbling, M. Luscher and H. Wittig, Comput. Phys. Commun. 153, 31-51
(2003), doi:10.1016/S0010-4655(02)00874-3 [arXiv:hep-lat/0212012 [hep-lat]].

S. Durr, Z. Fodor, C. Hoelbling, R. Hoffmann, S. D. Katz, S. Krieg, T. Kurth,
L. Lellouch, T. Lippert and K. K. Szabo, et al. Phys. Rev. D 79, 014501 (2009),
d0i:10.1103/PhysRevD.79.014501 [arXiv:0802.2706 [hep-lat]].

M. Baboulin, A. Buttari, J. Dongarra, J. Kurzak, J. Langou, J. Langou, P. Luszczek and
S. Tomov, Computer Physics Communications, Volume 180, Issue 12, Pages 2526-2533,
(2009), doi.org/10.1016/j.cpc.2008.11.005.

A. Haidar, H. Bayraktar, S. Tomov, J. Dongarra and N. J. Higham, Proc. R. Soc. A.476,
20200110, doi.org/10.1098 /rspa.2020.0110.

W. Kamleh, Lect. Notes Phys. 663, 65 (2005), doi:10.1007/11356462_3 [hep-lat/0209154].

A. Alexandru, C. Pelissier, B. Gamari and F. Lee, J. Comput. Phys. 231, 1866-1878 (2012),
d0i:10.1016/j.jcp.2011.11.003 [arXiv:1103.5103 [hep-lat]].

20



	Introduction
	Coding guidelines and vector layouts
	Norms, dot-products and multiply-adds
	Clover routine
	Wilson Laplace and Dirac routines
	Brillouin Laplace and Dirac routines
	Susskind ``staggered'' Dirac routine
	Dependence on compile-time parameters
	Krylov space inverters
	Summary
	Gamma matrices and Wilson projection trick
	Details of the Wilson Laplace and Dirac routines
	Details of the Brillouin Laplace and Dirac routines
	Details of the Susskind ``staggered'' Dirac routine
	Flop count and memory traffic details
	Wilson Laplace operator
	Wilson Dirac operator
	Brillouin Laplace operator
	Brillouin Dirac operator
	Susskind ``staggered'' Dirac operator
	Clover improvement operator


