001019543 001__ 1019543
001019543 005__ 20240102203541.0
001019543 0247_ $$2arXiv$$aarXiv:2210.06860
001019543 0247_ $$2doi$$a10.22323/1.430.0289
001019543 0247_ $$2datacite_doi$$a10.34734/FZJ-2023-05490
001019543 037__ $$aFZJ-2023-05490
001019543 041__ $$aEnglish
001019543 1001_ $$0P:(DE-HGF)0$$aAmmer, Maximilian$$b0$$eCorresponding author
001019543 1112_ $$aLattice 2022$$cBonn$$d2022-08-08 - 2022-08-13$$gLattice 2022$$wGermany
001019543 245__ $$a$\mathbf{c_\textbf{SW}}$ at One-Loop Order for Brillouin Fermions
001019543 260__ $$bSissa Medialab Trieste, Italy$$c2023
001019543 29510 $$aProceedings of The 39th International Symposium on Lattice Field Theory — PoS(LATTICE2022) - Sissa Medialab Trieste, Italy, 2022. - ISBN - doi:10.22323/1.430.0289
001019543 300__ $$a289
001019543 3367_ $$2ORCID$$aCONFERENCE_PAPER
001019543 3367_ $$033$$2EndNote$$aConference Paper
001019543 3367_ $$2BibTeX$$aINPROCEEDINGS
001019543 3367_ $$2DRIVER$$aconferenceObject
001019543 3367_ $$2DataCite$$aOutput Types/Conference Paper
001019543 3367_ $$0PUB:(DE-HGF)8$$2PUB:(DE-HGF)$$aContribution to a conference proceedings$$bcontrib$$mcontrib$$s1704197661_26653
001019543 3367_ $$0PUB:(DE-HGF)7$$2PUB:(DE-HGF)$$aContribution to a book$$mcontb
001019543 500__ $$aProceedings of the 39th International Symposium on Lattice Field Theory, 8th-13th August, 2022, Rheinische Friedrich-Wilhelms-Universit\'at Bonn, Bonn, Germany
001019543 520__ $$aWilson-like Dirac operators can be written in the form $D=\gamma_\mu\nabla_\mu-\frac {ar}{2} \Delta$. For Wilson fermions the standard two-point derivative $\nabla_\mu^{(\mathrm{std})}$ and 9-point Laplacian $\Delta^{(\mathrm{std})}$ are used. For Brillouin fermions these are replaced by improved discretizations $\nabla_\mu^{(\mathrm{iso})}$ and $\Delta^{(\mathrm{bri})}$ which have 54- and 81-point stencils respectively. We derive the Feynman rules in lattice perturbation theory for the Brillouin action and apply them to the calculation of the improvement coefficient ${c_\mathrm{SW}}$, which, similar to the Wilson case, has a perturbative expansion of the form ${c_\mathrm{SW}}=1+{c_\mathrm{SW}}^{(1)}g_0^2+\mathcal{O}(g_0^4)$. For $N_c=3$ we find ${c_\mathrm{SW}}^{(1)}_\mathrm{Brillouin} =0.12362580(1) $, compared to ${c_\mathrm{SW}}^{(1)}_\mathrm{Wilson} = 0.26858825(1)$, both for $r=1$.
001019543 536__ $$0G:(DE-HGF)POF4-5111$$a5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511)$$cPOF4-511$$fPOF IV$$x0
001019543 588__ $$aDataset connected to DataCite
001019543 7001_ $$0P:(DE-Juel1)132580$$aDurr, Stephan$$b1
001019543 773__ $$a10.22323/1.430.0289
001019543 8564_ $$uhttps://arxiv.org/pdf/2210.06860.pdf
001019543 8564_ $$uhttps://juser.fz-juelich.de/record/1019543/files/2210.06860.pdf$$yOpenAccess
001019543 8564_ $$uhttps://juser.fz-juelich.de/record/1019543/files/2210.06860.gif?subformat=icon$$xicon$$yOpenAccess
001019543 8564_ $$uhttps://juser.fz-juelich.de/record/1019543/files/2210.06860.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
001019543 8564_ $$uhttps://juser.fz-juelich.de/record/1019543/files/2210.06860.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
001019543 8564_ $$uhttps://juser.fz-juelich.de/record/1019543/files/2210.06860.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
001019543 909CO $$ooai:juser.fz-juelich.de:1019543$$popenaire$$popen_access$$pVDB$$pdriver$$pdnbdelivery
001019543 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)132580$$aForschungszentrum Jülich$$b1$$kFZJ
001019543 9131_ $$0G:(DE-HGF)POF4-511$$1G:(DE-HGF)POF4-510$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5111$$aDE-HGF$$bKey Technologies$$lEngineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action$$vEnabling Computational- & Data-Intensive Science and Engineering$$x0
001019543 9141_ $$y2023
001019543 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001019543 915__ $$0LIC:(DE-HGF)CCBYNCND4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
001019543 920__ $$lyes
001019543 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x0
001019543 980__ $$acontrib
001019543 980__ $$aVDB
001019543 980__ $$aUNRESTRICTED
001019543 980__ $$acontb
001019543 980__ $$aI:(DE-Juel1)JSC-20090406
001019543 9801_ $$aFullTexts