001     1019543
005     20240102203541.0
024 7 _ |a arXiv:2210.06860
|2 arXiv
024 7 _ |a 10.22323/1.430.0289
|2 doi
024 7 _ |a 10.34734/FZJ-2023-05490
|2 datacite_doi
037 _ _ |a FZJ-2023-05490
041 _ _ |a English
100 1 _ |a Ammer, Maximilian
|0 P:(DE-HGF)0
|b 0
|e Corresponding author
111 2 _ |a Lattice 2022
|g Lattice 2022
|c Bonn
|d 2022-08-08 - 2022-08-13
|w Germany
245 _ _ |a $\mathbf{c_\textbf{SW}}$ at One-Loop Order for Brillouin Fermions
260 _ _ |c 2023
|b Sissa Medialab Trieste, Italy
295 1 0 |a Proceedings of The 39th International Symposium on Lattice Field Theory — PoS(LATTICE2022) - Sissa Medialab Trieste, Italy, 2022. - ISBN - doi:10.22323/1.430.0289
300 _ _ |a 289
336 7 _ |a CONFERENCE_PAPER
|2 ORCID
336 7 _ |a Conference Paper
|0 33
|2 EndNote
336 7 _ |a INPROCEEDINGS
|2 BibTeX
336 7 _ |a conferenceObject
|2 DRIVER
336 7 _ |a Output Types/Conference Paper
|2 DataCite
336 7 _ |a Contribution to a conference proceedings
|b contrib
|m contrib
|0 PUB:(DE-HGF)8
|s 1704197661_26653
|2 PUB:(DE-HGF)
336 7 _ |a Contribution to a book
|0 PUB:(DE-HGF)7
|2 PUB:(DE-HGF)
|m contb
500 _ _ |a Proceedings of the 39th International Symposium on Lattice Field Theory, 8th-13th August, 2022, Rheinische Friedrich-Wilhelms-Universit\'at Bonn, Bonn, Germany
520 _ _ |a Wilson-like Dirac operators can be written in the form $D=\gamma_\mu\nabla_\mu-\frac {ar}{2} \Delta$. For Wilson fermions the standard two-point derivative $\nabla_\mu^{(\mathrm{std})}$ and 9-point Laplacian $\Delta^{(\mathrm{std})}$ are used. For Brillouin fermions these are replaced by improved discretizations $\nabla_\mu^{(\mathrm{iso})}$ and $\Delta^{(\mathrm{bri})}$ which have 54- and 81-point stencils respectively. We derive the Feynman rules in lattice perturbation theory for the Brillouin action and apply them to the calculation of the improvement coefficient ${c_\mathrm{SW}}$, which, similar to the Wilson case, has a perturbative expansion of the form ${c_\mathrm{SW}}=1+{c_\mathrm{SW}}^{(1)}g_0^2+\mathcal{O}(g_0^4)$. For $N_c=3$ we find ${c_\mathrm{SW}}^{(1)}_\mathrm{Brillouin} =0.12362580(1) $, compared to ${c_\mathrm{SW}}^{(1)}_\mathrm{Wilson} = 0.26858825(1)$, both for $r=1$.
536 _ _ |a 5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511)
|0 G:(DE-HGF)POF4-5111
|c POF4-511
|f POF IV
|x 0
588 _ _ |a Dataset connected to DataCite
700 1 _ |a Durr, Stephan
|0 P:(DE-Juel1)132580
|b 1
773 _ _ |a 10.22323/1.430.0289
856 4 _ |u https://arxiv.org/pdf/2210.06860.pdf
856 4 _ |u https://juser.fz-juelich.de/record/1019543/files/2210.06860.pdf
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/1019543/files/2210.06860.gif?subformat=icon
|x icon
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/1019543/files/2210.06860.jpg?subformat=icon-1440
|x icon-1440
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/1019543/files/2210.06860.jpg?subformat=icon-180
|x icon-180
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/1019543/files/2210.06860.jpg?subformat=icon-640
|x icon-640
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:1019543
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)132580
913 1 _ |a DE-HGF
|b Key Technologies
|l Engineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action
|1 G:(DE-HGF)POF4-510
|0 G:(DE-HGF)POF4-511
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Enabling Computational- & Data-Intensive Science and Engineering
|9 G:(DE-HGF)POF4-5111
|x 0
914 1 _ |y 2023
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
|0 LIC:(DE-HGF)CCBYNCND4
|2 HGFVOC
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)JSC-20090406
|k JSC
|l Jülich Supercomputing Center
|x 0
980 _ _ |a contrib
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a contb
980 _ _ |a I:(DE-Juel1)JSC-20090406
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21