001019565 001__ 1019565
001019565 005__ 20250204113743.0
001019565 0247_ $$2doi$$a10.1002/pssa.202300404
001019565 0247_ $$2ISSN$$a1862-6300
001019565 0247_ $$2ISSN$$a0031-8965
001019565 0247_ $$2ISSN$$a1521-396X
001019565 0247_ $$2ISSN$$a(1970-2004)
001019565 0247_ $$2ISSN$$a1862-6319
001019565 0247_ $$2ISSN$$a(2005-2017)
001019565 0247_ $$2datacite_doi$$a10.34734/FZJ-2023-05502
001019565 0247_ $$2WOS$$aWOS:001170508800001
001019565 037__ $$aFZJ-2023-05502
001019565 082__ $$a530
001019565 1001_ $$0P:(DE-Juel1)130926$$aRushchanskii, Konstantin Z.$$b0$$eCorresponding author
001019565 245__ $$aDoped HfO x Nanoclusters: Polar and Resistive Switching in the Smallest Functional Units
001019565 260__ $$aWeinheim$$bWiley-VCH$$c2024
001019565 3367_ $$2DRIVER$$aarticle
001019565 3367_ $$2DataCite$$aOutput Types/Journal article
001019565 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1732261211_32546
001019565 3367_ $$2BibTeX$$aARTICLE
001019565 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001019565 3367_ $$00$$2EndNote$$aJournal Article
001019565 520__ $$aIn the study presented in this article, the impact of proton doping on the structuraland electronic properties of hafnium oxide nanoclusters is investigated, with afocus on their potential for use in resistive and polar switching devices. In theresults, it is shown that the incorporation of protons can stabilize the cage-likecrystalline structures of Hf6Oxclusters, leading to reversible changes in electronicproperties by varying oxygen stoichiometry. However, the full coverage of hafniaatoms by hydrogen removes in-gap states, highlighting the importance of con-trolled moisture content in redox-based memristive devices and neuromorphicunits. In addition, in this study, the polar properties of these clusters are explored,illustrating possible polar switching in metastable pure Hf6O9, low-barrier anti-ferroelectric-like switching in carbon-stabilized Hf6O9∶C, and low-barrier polarswitching in Hf10O15∶C. In thesefindings, the potential of HfOxclusters isrevealed as active components for next-generation high-capacity nonvolatileelectronic memory and beyond von Neumann computing in sub-nanometer scale.
001019565 536__ $$0G:(DE-HGF)POF4-5211$$a5211 - Topological Matter (POF4-521)$$cPOF4-521$$fPOF IV$$x0
001019565 536__ $$0G:(GEPRIS)277688301$$aSFB 917 B08 - Theorie und Modellierung des valenzwechselbasierenden resistiven Schaltens (B08) (277688301)$$c277688301$$x1
001019565 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001019565 7001_ $$0P:(DE-Juel1)130799$$aLezaic, Marjana$$b1
001019565 7001_ $$0P:(DE-Juel1)130548$$aBlügel, Stefan$$b2
001019565 773__ $$0PERI:(DE-600)1481091-8$$a10.1002/pssa.202300404$$gp. 2300404$$n22$$p2300404$$tPhysica status solidi / A$$v221$$x1862-6300$$y2024
001019565 8564_ $$uhttps://juser.fz-juelich.de/record/1019565/files/Physica%20Status%20Solidi%20a%20-%202023%20-%20Rushchanskii%20-%20Doped%20HfOx%20Nanoclusters%20Polar%20and%20Resistive%20Switching%20in%20the%20Smallest.pdf$$yOpenAccess
001019565 8767_ $$d2023-12-18$$eHybrid-OA$$jDEAL
001019565 909CO $$ooai:juser.fz-juelich.de:1019565$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$pOpenAPC_DEAL$$popen_access$$popenaire
001019565 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130926$$aForschungszentrum Jülich$$b0$$kFZJ
001019565 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130799$$aForschungszentrum Jülich$$b1$$kFZJ
001019565 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130548$$aForschungszentrum Jülich$$b2$$kFZJ
001019565 9131_ $$0G:(DE-HGF)POF4-521$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5211$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vQuantum Materials$$x0
001019565 9141_ $$y2024
001019565 915pc $$0PC:(DE-HGF)0000$$2APC$$aAPC keys set
001019565 915pc $$0PC:(DE-HGF)0120$$2APC$$aDEAL: Wiley 2019
001019565 915__ $$0LIC:(DE-HGF)CCBYNC4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial CC BY-NC 4.0
001019565 915__ $$0StatID:(DE-HGF)3001$$2StatID$$aDEAL Wiley$$d2023-10-21$$wger
001019565 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2023-10-21
001019565 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001019565 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2023-10-21
001019565 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2024-12-05$$wger
001019565 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPHYS STATUS SOLIDI A : 2022$$d2024-12-05
001019565 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-12-05
001019565 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2024-12-05
001019565 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2024-12-05
001019565 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2024-12-05
001019565 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2024-12-05
001019565 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2024-12-05
001019565 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2024-12-05
001019565 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2024-12-05
001019565 9201_ $$0I:(DE-Juel1)PGI-1-20110106$$kPGI-1$$lQuanten-Theorie der Materialien$$x0
001019565 9201_ $$0I:(DE-Juel1)IAS-1-20090406$$kIAS-1$$lQuanten-Theorie der Materialien$$x1
001019565 9201_ $$0I:(DE-82)080009_20140620$$kJARA-FIT$$lJARA-FIT$$x2
001019565 9201_ $$0I:(DE-82)080012_20140620$$kJARA-HPC$$lJARA - HPC$$x3
001019565 980__ $$ajournal
001019565 980__ $$aVDB
001019565 980__ $$aUNRESTRICTED
001019565 980__ $$aI:(DE-Juel1)PGI-1-20110106
001019565 980__ $$aI:(DE-Juel1)IAS-1-20090406
001019565 980__ $$aI:(DE-82)080009_20140620
001019565 980__ $$aI:(DE-82)080012_20140620
001019565 980__ $$aAPC
001019565 9801_ $$aAPC
001019565 9801_ $$aFullTexts