001019568 001__ 1019568
001019568 005__ 20250804115220.0
001019568 0247_ $$2doi$$a10.1002/prot.26635
001019568 0247_ $$2ISSN$$a0887-3585
001019568 0247_ $$2ISSN$$a1097-0134
001019568 0247_ $$2datacite_doi$$a10.34734/FZJ-2023-05505
001019568 0247_ $$2pmid$$a37964477
001019568 0247_ $$2WOS$$aWOS:001105186900001
001019568 037__ $$aFZJ-2023-05505
001019568 082__ $$a570
001019568 1001_ $$0P:(DE-HGF)0$$aSmorodina, Eva$$b0
001019568 245__ $$aEffects of ion type and concentration on the structure and aggregation of the amyloid peptide A β16−22$$ {\boldsymbol{\beta}}_{16-22} $$
001019568 260__ $$aNew York, NY$$bWiley-Liss$$c2025
001019568 3367_ $$2DRIVER$$aarticle
001019568 3367_ $$2DataCite$$aOutput Types/Journal article
001019568 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1753686983_21155
001019568 3367_ $$2BibTeX$$aARTICLE
001019568 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001019568 3367_ $$00$$2EndNote$$aJournal Article
001019568 520__ $$aAmong the various factors controlling the amyloid aggregation process, the influences ofions on the aggregation rate and the resultingstructures are important aspects to con-sider, which can be studied by molecular simulations. There is a wide variety of proteinforce fields and ion models, raising the question of which model to use in such studies. Toaddress this question, we perform molecular dynamics simulations of Aβ16–22, a fragmentof the Alzheimer's amyloidβpeptide, using different protein force fields, AMBER99SB-disp (A99-d) and CHARMM36m (C36m), and different ion parameters. The influences ofNaCl and CaCl2at various concentrations are studied and compared with the systemswithout the addition of ions. Our results indicate a sensitivity of the peptide-ion interac-tions to the different ion models. In particular, we observe a strong binding of Ca2+to res-idue E22 with C36m and also with the Åqvist ion model used together with A99-d, whichslightly affects the monomeric Aβ16–22structures and the aggregation rate, but signifi-cantly affects the oligomer structures formedin the aggregation simulations. For example,at high Ca2+concentrations, there was a switch from an antiparallel to a parallelβ-sheet.Such ionic influences are of biological relevance because local ion concentrations canchange in vivo and could help explain thepolymorphism of amyloid fibrils.
001019568 536__ $$0G:(DE-HGF)POF4-5241$$a5241 - Molecular Information Processing in Cellular Systems (POF4-524)$$cPOF4-524$$fPOF IV$$x0
001019568 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001019568 7001_ $$0P:(DE-Juel1)178946$$aKav, Batuhan$$b1
001019568 7001_ $$0P:(DE-Juel1)176262$$aFatafta, Hebah$$b2$$ufzj
001019568 7001_ $$0P:(DE-Juel1)132024$$aStrodel, Birgit$$b3$$eCorresponding author
001019568 773__ $$0PERI:(DE-600)1475032-6$$a10.1002/prot.26635$$gp. prot.26635$$n8$$p1369-1382$$tProteins$$v93$$x0887-3585$$y2025
001019568 8564_ $$uhttps://juser.fz-juelich.de/record/1019568/files/Proteins%20-%202023%20-%20Smorodina%20-%20Effects%20of%20ion%20type%20and%20concentration%20on%20the%20structure%20and%20aggregation%20of%20the%20amyloid%20peptide.pdf$$yOpenAccess
001019568 8767_ $$d2023-12-18$$eHybrid-OA$$jDEAL
001019568 909CO $$ooai:juser.fz-juelich.de:1019568$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$pOpenAPC_DEAL$$popen_access$$popenaire
001019568 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)176262$$aForschungszentrum Jülich$$b2$$kFZJ
001019568 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)132024$$aForschungszentrum Jülich$$b3$$kFZJ
001019568 9131_ $$0G:(DE-HGF)POF4-524$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5241$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vMolecular and Cellular Information Processing$$x0
001019568 9141_ $$y2025
001019568 915pc $$0PC:(DE-HGF)0000$$2APC$$aAPC keys set
001019568 915pc $$0PC:(DE-HGF)0120$$2APC$$aDEAL: Wiley 2019
001019568 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-08-19
001019568 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2023-08-19
001019568 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2023-08-19
001019568 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2023-08-19
001019568 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPROTEINS : 2022$$d2023-08-19
001019568 915__ $$0LIC:(DE-HGF)CCBYNC4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial CC BY-NC 4.0
001019568 915__ $$0StatID:(DE-HGF)3001$$2StatID$$aDEAL Wiley$$d2023-08-19$$wger
001019568 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2023-08-19
001019568 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2023-08-19
001019568 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2023-08-19
001019568 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2023-08-19
001019568 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001019568 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2023-08-19
001019568 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2023-08-19$$wger
001019568 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2023-08-19
001019568 920__ $$lyes
001019568 9201_ $$0I:(DE-Juel1)IBI-7-20200312$$kIBI-7$$lStrukturbiochemie$$x0
001019568 980__ $$ajournal
001019568 980__ $$aVDB
001019568 980__ $$aUNRESTRICTED
001019568 980__ $$aI:(DE-Juel1)IBI-7-20200312
001019568 980__ $$aAPC
001019568 9801_ $$aAPC
001019568 9801_ $$aFullTexts