001     1019568
005     20250804115220.0
024 7 _ |a 10.1002/prot.26635
|2 doi
024 7 _ |a 0887-3585
|2 ISSN
024 7 _ |a 1097-0134
|2 ISSN
024 7 _ |a 10.34734/FZJ-2023-05505
|2 datacite_doi
024 7 _ |a 37964477
|2 pmid
024 7 _ |a WOS:001105186900001
|2 WOS
037 _ _ |a FZJ-2023-05505
082 _ _ |a 570
100 1 _ |a Smorodina, Eva
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Effects of ion type and concentration on the structure and aggregation of the amyloid peptide A β16−22$$ {\boldsymbol{\beta}}_{16-22} $$
260 _ _ |a New York, NY
|c 2025
|b Wiley-Liss
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1753686983_21155
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Among the various factors controlling the amyloid aggregation process, the influences ofions on the aggregation rate and the resultingstructures are important aspects to con-sider, which can be studied by molecular simulations. There is a wide variety of proteinforce fields and ion models, raising the question of which model to use in such studies. Toaddress this question, we perform molecular dynamics simulations of Aβ16–22, a fragmentof the Alzheimer's amyloidβpeptide, using different protein force fields, AMBER99SB-disp (A99-d) and CHARMM36m (C36m), and different ion parameters. The influences ofNaCl and CaCl2at various concentrations are studied and compared with the systemswithout the addition of ions. Our results indicate a sensitivity of the peptide-ion interac-tions to the different ion models. In particular, we observe a strong binding of Ca2+to res-idue E22 with C36m and also with the Åqvist ion model used together with A99-d, whichslightly affects the monomeric Aβ16–22structures and the aggregation rate, but signifi-cantly affects the oligomer structures formedin the aggregation simulations. For example,at high Ca2+concentrations, there was a switch from an antiparallel to a parallelβ-sheet.Such ionic influences are of biological relevance because local ion concentrations canchange in vivo and could help explain thepolymorphism of amyloid fibrils.
536 _ _ |a 5241 - Molecular Information Processing in Cellular Systems (POF4-524)
|0 G:(DE-HGF)POF4-5241
|c POF4-524
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Kav, Batuhan
|0 P:(DE-Juel1)178946
|b 1
700 1 _ |a Fatafta, Hebah
|0 P:(DE-Juel1)176262
|b 2
|u fzj
700 1 _ |a Strodel, Birgit
|0 P:(DE-Juel1)132024
|b 3
|e Corresponding author
773 _ _ |a 10.1002/prot.26635
|g p. prot.26635
|0 PERI:(DE-600)1475032-6
|n 8
|p 1369-1382
|t Proteins
|v 93
|y 2025
|x 0887-3585
856 4 _ |u https://juser.fz-juelich.de/record/1019568/files/Proteins%20-%202023%20-%20Smorodina%20-%20Effects%20of%20ion%20type%20and%20concentration%20on%20the%20structure%20and%20aggregation%20of%20the%20amyloid%20peptide.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:1019568
|p openaire
|p open_access
|p OpenAPC_DEAL
|p driver
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)176262
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)132024
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-524
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Molecular and Cellular Information Processing
|9 G:(DE-HGF)POF4-5241
|x 0
914 1 _ |y 2025
915 p c |a APC keys set
|0 PC:(DE-HGF)0000
|2 APC
915 p c |a DEAL: Wiley 2019
|0 PC:(DE-HGF)0120
|2 APC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2023-08-19
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2023-08-19
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2023-08-19
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2023-08-19
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b PROTEINS : 2022
|d 2023-08-19
915 _ _ |a Creative Commons Attribution-NonCommercial CC BY-NC 4.0
|0 LIC:(DE-HGF)CCBYNC4
|2 HGFVOC
915 _ _ |a DEAL Wiley
|0 StatID:(DE-HGF)3001
|2 StatID
|d 2023-08-19
|w ger
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2023-08-19
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2023-08-19
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2023-08-19
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2023-08-19
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2023-08-19
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2023-08-19
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2023-08-19
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IBI-7-20200312
|k IBI-7
|l Strukturbiochemie
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IBI-7-20200312
980 _ _ |a APC
980 1 _ |a APC
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21