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Abstract

Among the various factors controlling the amyloid aggregation process, the influences of

ions on the aggregation rate and the resulting structures are important aspects to con-

sider, which can be studied by molecular simulations. There is a wide variety of protein

force fields and ion models, raising the question of which model to use in such studies. To

address this question, we perform molecular dynamics simulations of Aβ16–22, a fragment

of the Alzheimer's amyloid β peptide, using different protein force fields, AMBER99SB-

disp (A99-d) and CHARMM36m (C36m), and different ion parameters. The influences of

NaCl and CaCl2 at various concentrations are studied and compared with the systems

without the addition of ions. Our results indicate a sensitivity of the peptide-ion interac-

tions to the different ion models. In particular, we observe a strong binding of Ca2+ to res-

idue E22 with C36m and also with the Åqvist ion model used together with A99-d, which

slightly affects the monomeric Aβ16–22 structures and the aggregation rate, but signifi-

cantly affects the oligomer structures formed in the aggregation simulations. For example,

at high Ca2+ concentrations, there was a switch from an antiparallel to a parallel β-sheet.

Such ionic influences are of biological relevance because local ion concentrations can

change in vivo and could help explain the polymorphism of amyloid fibrils.
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1 | INTRODUCTION

The role of the amyloid β peptide (Aβ) in the development of Alzhei-

mer's disease (AD) has been the focus of research since the 1990s

and is a central component of the amyloid cascade hypothesis.1–3 It

proposes that the accumulation of excess Aβ leads to neuronal loss

and ultimately dementia. However, this is an oversimplification, espe-

cially when one considers that many aspects of AD pathogenesis that

are downstream in the cascade, such as oxidative stress and inflam-

mation, are also involved. A growing body of evidence suggests that

there are a variety of positive feedback loops in AD,4 where processes

downstream in the cascade can stimulate processes upstream, and

thus are likely to accelerate and increase the severity of AD, rather

than a linear cascade. The fact that Aβ is prone to interact with other

components in the brain complicates the aggregation pathway and

poses serious challenges for therapeutic development. One of these

types of interactions is with ions. Aβ is a negatively charged peptide

under physiological conditions.5 It is therefore expected to interact

strongly with the most abundant ions like sodium (Na+) and calcium

ions (Ca2+), which are known to play a role in neuronal function.6,7

For example, impaired glutamate clearance and decreased levels of

Na+/K+-ATPase in the brain have been reported to be associated
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with AD, thereby disrupting the balance of monovalent alkali metal

ions across neuronal membranes, which may significantly affect the

electrophysiological activity of brain cells. In addition, the Ca2+ con-

centration around Aβ deposits was shown to be significantly increased

in AD brains compared with physiological conditions, suggesting a role

in AD development.8,9

Most studies evaluating the effects of metal ions on Aβ have been

performed in vitro, but molecular dynamics (MD) simulation studies

have also been performed for this purpose.10 Instead of studying the

full-length Aβ peptide, which requires considerable amounts of simula-

tions and also wallclock time to obtain convergent MD trajectories for

this intrinsically disordered protein (IDP),11 one often resorts to study-

ing smaller peptides, such as the Aβ16–22 peptide. Aβ16–22 is ideal for

simulation studies because it requires less computational effort while

aggregating into amyloid fibrils with antiparallel β-sheet orientation.12

This peptide is also often used for benchmarking protein force fields

and simulation methods, which was done for Aβ16–22 monomers,13,14

dimers,14–16 trimers,17 and hexamers.18,19 In our recent work, we have

assessed the performance of different IDP force fields to reproduce

the Aβ16–22 aggregation process up to hexamers,13,18 and found them

to be superior compared with the non-IDP force fields, as they also

perform better in the modeling of the conformational ensemble of

full-length Aβ and other IDPs.16,20 In our investigation of Aβ, we con-

ducted a thorough comparison between ensemble-averaged nuclear

magnetic resonance (NMR) observables calculated from our simula-

tions and corresponding experimental data.20 We also assessed the

correlation of the simulation data with structural and kinetic informa-

tion that was determined by fluorescence spectroscopy. Our analysis

revealed that only the CHARMM and AMBER force fields adapted for

IDPs were capable of faithfully reproducing the diverse experimental

values. To evaluate the performance of these IDP-adapted force fields

in modeling amyloid aggregation, we devised two distinct

approaches.18,19 First, we examined their ability to replicate the exper-

imental ranking of aggregation speed, spanning from no aggregation

to rapid aggregation, as observed for different Aβ16–22 variants.21

Additionally, we tested their capacity to model the ultimate aggrega-

tion end product, namely the Aβ16–22 amyloid fibril for which a solid-

state NMR structure is available.12 In both assessments, the IDP force

field from the CHARMM family consistently outperformed those from

the AMBER family, although the latter still demonstrated superior per-

formance when compared with non-IDP force fields. What has not

yet been addressed in these benchmark studies are the possible

effects of ion concentration and also ion parameters on Aβ16–22 aggre-

gation, which are, therefore, the focus of this study.

When it comes to choosing among the available ion parameters,

one finds oneself in a zoo of possibilities. Apart from the fact that each

of the large force fields from the CHARMM and AMBER families has its

own ion parameters, there are many independently developed ion

parameters that are suitable for different applications and differ in terms

of the targeted experimental values.22 The AMBER force fields use

AMBER-adapted Åqvist parameters23 for the cations and Dang parame-

ters24 for the chloride ion together with the SPC/E water model, which

were developed to reproduce the experimental solvation free energies.

Although it is known that these parameters lack a balance between ion-

water and ion-ion interactions and thus give rise to spontaneous

crystallization,25 these parameters are still widely used for the divalent

cations, regardless of the chosen water model. Joung and Cheatham

attempted to overcome most of the shortcomings of the Åqvist/Dang

ion parameters for the monovalent alkali cations used with the SPC/E,

TIP3P, or TIP4P EWwater model by adding lattice energies and interio-

nic distances.26,27 As a result, the Joung-Cheatham ion parameters are

now the default monovalent ion parameters for the AMBER force

fields.22 As for CHARMM, the initial ion parameters for Na+ and K+

were developed by Beglov and Roux,28 and are still part of the official

CHARMM36m (called C36m henceforth) distribution,29 one of the

force fields used here. Currently, the only anion available within C36m

is chloride. Within the framework of fixed-charge nonpolarizable force

fields, there is an increasing interest in scaled-charge schemes.30 This

approach allows us to include the effects of polarization in a mean-field

way, that is, without introducing explicit terms for polarizability, by sim-

ply scaling the point charges of the ions.31–35 This leads to ionic point

charges which are no longer integers. For example, in the recently

developed Madrid ion parameters, Na+, Ca2+, and Cl� have charges of

+0.85, +1.70, and �0.85 e�, respectively.36,37 It is worth noting that

the Madrid ion parameters were developed using the TIP4P-EW

water model without a specific biomolecular force field in mind.

In this study, we compare of the effects of different ion concentra-

tions and parameters on the structure and aggregation of Aβ16–22. We

test both NaCl and CaCl2 at concentrations of 50 mM and 500 mM, and

also include the case of no ions being added. Two all-atom force fields

developed for IDPs, namely, AMBER99SB-disp (A99-d)20 and C36m29

are used. For the latter, we also test the implementation with enhanced

protein-water interactions,29 which we call here C36mW. For the ion

parameters we consider the Åqvist, Joung-Cheatham, and Madrid param-

eters together with A99-d, and the default ion types for the C36m simu-

lations. Using this set of force field/ion paramter combinations, we aim

to identify the different influences of the protein force field, extra scaling

of protein-water interactions (as possible via C36m), and ion parameters

on the behavior of Aβ16–22. We report results for monomeric and hex-

americ Aβ16–22 systems that we have studied using all-atom MD simula-

tions on the μs time scale.

2 | METHODOLOGY

2.1 | Simulation details

We obtained the initial Aβ16–22 structure (shown in Figure 1) used for

all systems as described in our previous publication.13 The protonation

states of the lysine and glutamic acid were assigned to correspond to

pH 7.0 and were thus modeled as protonated and deprotonated,

respectively. The N- and C-termini were capped using acetyl (ACE)

and N-methylamide (NME) groups, respectively. We added no salts or

either NaCl and CaCl2 at concentrations of 50 or 500 mM. We con-

sidered three protein force fields, namely A99-d,20 C36m,29 and

C36mW,29 The latter is based on C36m but includes more favorable

van der Waals interactions between protein and water. For A99-d, we

used three different ion parameters: Åqvist23 for the cations and
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Dang24 for the chloride, Joung-Cheatham,26,27 and Madrid.37 For

C36m and C36mW, we employed the standard C36m ion parameters.

After solvation and addition of ions, we minimized the energy of

each initial system using the steepest descent algorithm for 50 000

steps. For equilibration, we first performed constant-volume simula-

tions at 300 K for 100 ps, followed up by constant-pressure

simulations at 1 bar for another 100 ps. We obtained the production

runs at 300 K and 1 bar using a 2 fs time step. During the equilibra-

tion simulations, we used, if applicable, the Berendsen barostat38 and

the Berendsen thermostat with velocity rescaling39 using 2.0 and

0.1 ps time constants, respectively. For the production runs, we

switched the barostat to the Parrinello-Rahman barostat40 to keep

the pressure at 1 bar with a time step of 2 ps. In all simulations, we

constrained the length of all bonds using the LINCS algorithm41 and

kept the water molecules rigid using the SETTLE algorithm.42 We

applied the particle mesh Ewald (PME) method43 to treat the electro-

static interactions with a real-space cutoff of 1.2 nm. For the van der

Waals interactions, we used the force-switch algorithm between the

distance range 1.0–1.2 nm. For the production runs, we simulated

three independent runs, all continuing from the last step of the

constant-pressure equilibration simulations. The monomer simulations

were run for 2 μs each, while each hexamer simulation was 1 μs long.

The total accumulated simulation time for this work is thus 153 μs.

Further details of the simulation setup can be found in Table 1. All

F IGURE 1 The starting structure of
Aβ16–22 used in all simulations.

TABLE 1 Details of the simulated systems.

Monomer simulations

FF Ion concentration (mM) # of atoms Box size (nm3) # of ions # water molecules

A99-d 0 15 330 4,9 � 4,9 � 4.9 3799

50 15 336 4,9 � 4,9 � 4,9 3 Na, 3 Cl 3799

15 327 3 Ca, 6 Cl 3796

500 15 144 4,9 � 4,9 � 4,9 35 Na, 35 Cl 3735

14 759 35 Ca, 70 Cl 3630

c36m/W 0 11 348 4,8 � 4,8 � 4,8 3738

50 11 354 4,8 � 4,8 � 4,8 3 Na, 3 Cl 3738

11 330 3 Ca, 6 Cl 3729

500 11 226 4,8 � 4,8 � 4,8 35 Na, 35 Cl 3674

11 144 34 Ca, 68 Cl 3636

Hexamer simulations

FF Ion concentration (mM) # of atoms Box size (nm3) # of ions # water molecules

A99-d 0 132 896 10 � 10 � 10 33 023

50 132 956 10 � 10 � 10 30 Na, 30 Cl 33 023

132 866 30 Ca, 60 Cl 32 993

500 131 312 10 � 10 � 10 304 Na, 304 Cl 32 475

130 400 304 Ca, 608 Cl 32 171

c36m/W 0 98 769 9,9 � 9,9 � 9,9 32 655

50 98 829 9,9 � 9,9 � 9,9 30 Na, 30 Cl 32 655

98 769 30 Ca, 60 Cl 32 625

500 97 733 9,9 � 9,9 � 9,9 304 Na, 304 Cl 32 107

97 125 304 Ca, 608 Cl 31 803
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simulations were realized with the MD simulation software GRO-

MACS version 2020.6.44–47

2.2 | Trajectory analysis

We performed the trajectory analysis using a combination of GRO-

MACS 202X tools, the MDTraj Python library,48 in-house Python

scripts,19 and ATRANET49 for transition network calculation (https://

github.com/strodel-group/ATRANET).

2.2.1 | Structural analysis

We computed the number of structural clusters for the Aβ16–22

monomers using the gmx cluster command, which applies a nearest

neighbor clustering algorithm based on the root mean square devia-

tion (RMSD) between the structures50 The RMSD was calculated

between the backbone atoms of any two structures collected in a tra-

jectory, and an RMSD cutoff of 0.2 nm was used to define neighbor-

hood. We calculated the three-bond 3JHN=HA and two-bond 2JN=CA

dipolar nuclear magnetic resonance (NMR) couplings using the equa-

tion J¼Acos2θþBcosθþC, where θ is the backbone torsion angle ϕ

for the 3J coupling and ψ for the 2J coupling. We used the values

A¼7:09, B¼�1:42, and C¼1:55 for the 3J couplings51 and

A¼7:6213, B¼�1:3791, and C¼�0:2067 for the 2J couplings.52

We calculated both the protein-water and intraprotein hydrogen

bonds (H-bonds) using the gmx hbond command, setting the cutoff

values for the hydrogen donor-acceptor angles and distances to 30�

and 0.35nm, respectively. The protein-ion contacts were determined

using a cutoff distance of 0.5 nm between the peptide Cα atoms and

the ions. For the intrapeptide contacts, we used a 0.5 nm cutoff

between the peptide non-hydrogen atoms. We computed the radial

distribution function, denoted as ρ rð Þ, for the protein-ion and ion-ion

pairs after removing the translational and rotational degrees of free-

dom from the trajectories using the gmx rdf command with a 0.2 nm

bin width. The secondary structure of Aβ16–22 was determined based

on the backbone ϕ/ψ angles: an amino acid is defined to adopt a

β-strand conformation if its ϕ/ψ angles fall within the polygon with

the vertices at (�180�, 180�), (�180�, 126�), (�162�, 126�), (�162�,

108�), �144�, 108�), (�144�, 90�), (�50�, 90�), and (�50�,180�); an

α-helical content if within the polygon (�90�, 0�), (�90�, �54�),

(�72�, �54�), (�72�, �72�), (�36�, �72�), (�36�, �18�), (�54�, �18�),

and (�54�, 0�). All other angle pairs are considered as random coil.53

2.2.2 | Transition networks

We computed transition networks for the hexamer simulations by cat-

egorizing the system according to its overall β-strand content and

maximum oligomerization state,18,19,54 which can range from 1 for

monomers only to 6 for the hexameric state. The β-strand content

was determined based on the torsion angles along peptides’

backbones (see above). The transition network calculations were all

realized with ATRANET49 and the resulting transition networks were

visualized with Gephi.55

3 | RESULTS AND DISCUSSION

3.1 | Structural characteristics of Aβ16–22
monomers

We begin our analysis by investigating the conformational ensemble

of the Aβ16–22 monomers. We performed an RMSD-based clustering

of the Aβ16–22 monomers and monitored the number of clusters

formed within the trajectory as a function of simulation time. Figure 2

shows that for all systems the number of different clusters converges

to its maximum values within �1000 ns. This happens slightly faster

for the C36mW force fields compared with the others, with A99-d/

Åq. requiring the longest simulation time to achieve convergence of

the number of structural clusters. Moreover, for A99-d/Åq, the final

number of clusters is the same regardless of the ion type and concen-

tration. The largest number of clusters (above 20) is obtained for

A99-d/JC at 500 mM NaCl, A99-d/Madrid at 500 mM CaCl2, C36m

without salt, and C36mW at 500 mM NaCl. However, the differences

between the C36m and C36mW clustering results are minor and of

almost no statistical significance, regardless of the ion type and

concentration.

Next, we investigate the structures formed by the Aβ16–22 mono-

mers using the 3J and 2J-couplings to this end (Figure 3). These values

could in principle be determined by NMR experiments, but such

values have not yet been published. Therefore, we cannot correlate

our simulation results with experiments. C36m and C36mW yield very

similar 3J and 2J-coupling values. For the A99-d models, A99-d/JC

and A99-d/Madrid are the most responsive to the presence of differ-

ent types and/or concentrations of ions, while no significant response

is seen for A99-d/Åq. C36m and C36mW predict larger 3J-coupling

values compared with the A99-d models, with the most notable dif-

ference for the A21-E22 bond. As a general trend, C36m and C36mW

predict smaller 2J-coupling values than the A99-d models for all

bonds.

To understand the differences seen for the NMR dipolar cou-

plings, we determined the secondary structure of Aβ16–22. Figure 4

shows that the Aβ16–22 monomers predominantly adopt the β-strand

structure for �70%–75% of the time, while α-helices formed with

about 10% probability, and random coil structures occurred with

�15%–20% frequencies. This result is consistent with the structures

that result from clustering the trajectories. The topmost clusters in

Figure 2 are all extended structures. Similar structures were also

found for the subsequent clusters. Only in some of the simulations

were other structural elements such as turns or helices observed in

the second cluster, which are also shown in Figure 2. The A99-d fam-

ily generally predicts a larger population of α-helical structures com-

pared with C36m/C36mW. Within the A99-d family, increasing the

ion concentration increases the α-helix formation independent of the

1372 SMORODINA ET AL.
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F IGURE 2 Number of structural clusters of monomeric Aβ16–22 as a function of time for the different protein and ion models (see label above
each panel) and salt types and concentrations (see color code at the bottom). The result without salt added (black) simulated with A99-d is only
shown once in the top left panel. The values are reported as the mean and standard error of the mean over three independent trajectories per
system. For each simulation, the Aβ16–22 structure representing the top cluster of each simulation (indicated by the color cloud surrounding the
peptide) is shown. For some of the simulations, also the representative structure of the second cluster is displayed (bottom right). Aβ16–22 is
shown as cartoon, with the N- and C-termini being indicated by blue and red spheres, respectively.

F IGURE 3 The three-bond 3JHN=HA (top) and two-bond 2JN=CA couplings (bottom) of monomeric Aβ16–22 for the different protein and ion
models (see labels on the top) and salt types and concentrations (see color code at the bottom). The results without salt added (black) simulated
with A99-d are only shown once in the most left panels. The values are reported as the mean and standard error of the mean over three
independent trajectories per system.
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ion model. Changing the cation from Na+ to Ca2+ increases the

α-helix population by about one third for A99-d/Madrid at 500 mM

salt concentration. The C36m and C36mW predictions for the α-helix

population are insensitive to the ion type and concentration. With

regard to the random coil populations, both C36m and C36mW yield

significantly larger random coil populations compared with the A99-d

family for all ion types and concentrations, but in particular when no

ions are present. Within the A99-d family, increasing the ion concen-

tration increases the random coil population, with the largest response

seen for the Madrid ion parameters and the smallest one for A99-d/

Aq. Changing the cation from Na+ to Ca2+ decreases the random coil

population at 50 mM salt concentration for both A99-d/Åq. and

A99-d/Madrid (for A99-d/JC there are no Ca2+ parameters), while

the opposite takes place with 500 mM salt. Yet the changes are

greater for A99-d/Madrid than for A99-d/Åq. For A99-d/JC, the

amount of random coil increases with increasing Na+ concentration

and is between the predictions by the other two ion models at 50 mM

Na+ and is the highest among the A99-d results at 500 mM Na+, yet

lower than for A99-d/Madrid at 500 mM Ca2+.

3.2 | Aβ16–22-ion interactions

Having examined the effects of ions on the secondary structure of

Aβ16–22 monomers, we turn our attention to protein-ion contacts,

since they are thought to be closely associated with structure forma-

tion. We computed the number of contacts between the cations and

the non-hydrogen atoms of the peptide residues. The results in

Figure 5 show large differences between the protein force fields and

ion parameters. Na+, in agreement with previous observations for

Aβ16–22,
56,57 shows almost no binding to the Aβ16–22 peptide, except

for C36mW at 500 mM NaCl. Ca2+ can bind to E22 as a result of

electrostatic attraction, yet only in A99-d/Åq., C36m, and C36mW.

The amount of bound Ca2+ is almost twice as large for C36m and

C36mW compared with A99-d/Åq. Cl� shows slight binding to K16

but only at 500 mM concentration of either salt, except for the JC

and Madrid ion parameters. C36m and C36mW have twice the num-

ber of bound Cl� compared with A99-d/Åq. It is interesting to note

that for the C36m and C36mW force fields, we also observe possible

Cl� binding at the negatively charged E22 when the CaCl2 concentra-

tion is high. In this case, significant Ca2+ binding occurs at this site,

which can also pull Cl� into the vicinity of E22.

3.3 | Intrapeptide and peptide-water hydrogen
bonding

We finalize our analysis of the Aβ16–22 monomers by calculating the

number of intrapeptide and Aβ16–22-water H-bonds. The results in

Figure 6 show that C36m and C36mW predict significantly fewer

intrapeptide H-bonds compared with the A99-d models, and the num-

ber decreases when we change the cation from Na+ to Ca2+. This cor-

relates with our observations from the secondary structure analysis

(Figure 4), in particular with the reduced helical content with C36m

and C36mW that requires H-bonding between residues. The highest

number of intrapeptide H-bonds is formed with the A99-d/Madrid

model. Furthermore, when the ion concentration is increased to

500 mM and when the cation is changed from Na+ to Ca2+,

A99-d/Madrid predicts a 50% increase in the number of intrapeptide

H-bonds, whereas A99-d/Åq. is rather unresponsive. This also corre-

lates with the secondary structure results and can be explained by a

decrease in peptide-water interactions due to the presence of ions,

which favors the formation of H-bonds within the peptide. The analy-

sis of the peptide-water H-bonding confirms this conclusion. In gen-

eral, A99-d, C36m, and C36mW yield similar values for the number of

H-bonds formed between Aβ16–22 and water. Changing the cation

from Na+ to Ca2+ decreases the peptide-water H-bonding with C36m

F IGURE 4 Population of the secondary structure elements
β-strand (top), α-helix (middle), and random coil (bottom) in
monomeric Aβ16–22 for the different salt concentrations (x-axis) and
for the different force fields (see color code at the top). The dotted
bars represent the systems with Ca2+. The results for no salts added
simulated with A99-d are shown as lilac (A99-d/Åq.) but also serve as
a reference for A99-d/JC and A99-d/Madrid. The values are averaged
over three independent trajectories per system, and the error bars
correspond to the standard error of the mean.
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and C36mW at both 50 mM and 500 mM salt concentrations, which

correlates with the tight binding of Ca2+ to E22 (Figure 5). For the

A99-d models, a difference between ion types is observed only at a

concentration of 500 mM and only for A99-d/Åq, which also predicts

a decrease in peptide-water H-bonding when switching from Na+ to

Ca2+ and is consistent with the ion binding affinity shown in Figure 5.

The A99-d/Madrid model does not lead to a significant change in the

number of protein-water H-bonds. This means that the response of

the C36m force fields to the change in ion type is larger than that of

the A99-d models.

3.4 | Interionic interactions

We now switch our perspective to the ion-ion interactions and pre-

sent the cation–cation and cation-anion radial distributions (Figure 7).

Overall, we see very large differences between the A99-d and C36m/

C36mW force fields, which is clearly evident from the cation-anion

ρ rð Þ profiles. For all cation-anion pairs and at all concentrations, C36m

and C36mW predict stronger interactions compared with the A99-d

models. For Ca2+-Cl�, we see direct ion pairing with C36m/C36mW,

indicated by a pronounced ρ rð Þ peak at r�0:25 nm, while this peak is

mostly small to non-existent in the A99-d models. A first ρ rð Þ peak

much higher than the second indicates close contact between the cat-

ion and the anion as a result of direct ion pairing, while a first ρ rð Þ
peak of similar height or lower than the second indicates that water

enters between the two ions, suggesting solvent-separated ion pairs

(i.e., indirect ion pairing). With regard to ρ rð Þ for Na+-Cl�, we also see

direct ion binding in the C36m, C36mW, and A99-d/Åq. models. The

degree of direct ion pairing generally increases with increasing ion

concentration from 50 to 500mM of NaCl and CaCl2, but no

permanent ion aggregation or even crystallization was observed in the

F IGURE 5 The average number of bound cations (top) and anions (bottom) to the Aβ16–22 residues (x-axis) for the different force fields (see
labels at the top) at various ion concentrations (see color code at the bottom). An ion is considered to be bound whenever it is within 0.5 nm of
the Cα atom of a residue, explaining that more than one ion can be bound to a residue. The numbers of cations in these systems are 3 for all
50 mM NaCl and CaCl2 systems, 34 for the C36m and C36mW systems at 500 mM CaCl2, and 35 for the C36m and C36mW systems at 500 mM
NaCl as well as for the A99-d systems at 500 mM salt. The values are averaged over three independent trajectories per system, and the error bars
correspond to the standard error of the mean.

F IGURE 6 The average number of H-bonds between monomeric

Aβ16–22 and water (top) and within the peptide (bottom) for the different
force fields (see color code) and at various ion concentrations (x-axis).
The dotted bars correspond to the systems with Ca2+. The results for no
salts added simulated with A99-d are shown as lilac (A99-d/Åq.) but also
serve as a reference for A99-d/JC and A99-d/Madrid. The values are
averaged over three independent trajectories per system, and the error
bars correspond to the standard error of the mean.

SMORODINA ET AL. 1375

 10970134, 2025, 8, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/prot.26635 by Forschungszentrum

 Jülich G
m

bH
 R

esearch C
enter, W

iley O
nline L

ibrary on [28/07/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



simulations. The extent of indirect ion pairing is greater for Ca2+ than

for Na+, which can be explained by the higher charge density of Ca2+,

which causes electrostatic attraction of Cl� beyond the first and even

second water shells surrounding this cation. The cation–cation radial

distributions show mostly low-intensity peaks due to electrostatic

repulsion between them (Figure 7). Nevertheless, some peaks in ρ rð Þ
of considerable intensity are observed for Na+-Na+ in A99-d/Åq. and

Ca2+-Ca2+ in C36m and C36mW, especially at 500mM salt

F IGURE 7 The radial distribution ρ rð Þ for the cation–cation (top) and cation-anion (bottom) pairs for the different force fields (see labels at
the top) and the different salt types and concentrations (see color code at the bottom).

cl1 cl2

F IGURE 8 Average Aβ16–22 oligomer size as a function of time for the different force fields (see labels above each panel) and the different
salt types and concentrations (see color code at the bottom). The result without salt added (black) simulated with A99-d is only shown once in the
top left panel. The values are reported as the mean and standard error of the mean over three independent trajectories per system. In the lower-
left corner, the two most populated hexamer structures are shown, resulting from clustering of the trajectories obtained with C36m at 500 mM
NaCl. The peptides are shown as cartoons, with the yellow arrows indicating β-sheets.
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concentration. This surprising finding results from the attraction of

these cations to E22, which allows two or more cations to approach

each other (Figure 5).

3.5 | Oligomerization of Aβ16–22

Next, we study the influences of ion concentration and parameters on

the aggregation of Aβ16–22. In each system, the six Aβ16–22 monomers

were initially placed such that there were no peptide–peptide interac-

tions in order not to bias the subsequent aggregation process. We con-

sider the peptides to be assembled when the distance between any

non-hydrogen atoms of two peptides or existing is less than 0.5 nm.

We then calculated the maximum oligomer size as a function of simula-

tion time to measure how fast the peptides aggregate. Figure 8 shows

that C36m is the only force field that leads to aggregation to the hex-

americ state. Here, aggregation is fastest at 500 mM NaCl, followed by

aggregation at 50 mM NaCl and without salt, which proceed at similar

rates, while the presence of CaCl2 seems to slow down the aggregation

process. Thus, the binding of Ca2+ to E22 inhibits the aggregation as

this reduces the electrostatic attraction between A16 and E22 that

drives the initial aggregation.16 Interestingly, Na+ at high concentra-

tions exerts the opposite effect. A possible explanation is that without

the presence of any ions, the initial A16-E22 interaction is very tight,

which slows down the reorientation into oligomers capable of growth.

The growth-competent oligomers involve the formation of β-sheets, as

the most populated hexamer structures in Figure 8 demonstrate.

A similar observation on the influence of NaCl on amyloid aggrega-

tion was made in a recent simulation study in which the aggregation of

amphipathic peptides into amyloid-like fibrils was investigated under var-

ious internal and external conditions.58 The internal conditions were

altered by studying different sequences Ace-(XKXE)2-NME, where X

stood for F, L, V, or A, whereas the different external conditions included

changes in temperature and NaCl concentration. For the peptides con-

taining the less hydrophobic amino acids, particularly for X = A, NaCl

was found to favor aggregation. One explanation for this is that for the

more hydrophobic amino acids X aggregation is driven by hydrophobic-

ity, so electrostatic interactions are less relevant, whereas for the less

hydrophobic X hydrophobic interactions become more important when

electrostatic interactions are screened. However, as noted above, this

argument also implies that electrostatic interactions, which also play a

role in promoting aggregation, are not the crucial factor for β-sheet for-

mation, which is required for amyloid aggregation.

In terms of aggregation rate, C36m is followed by C36mW, albeit

at a significant distance. Within 1 μs, C36mW does not yield stable

hexamers. Similar to C36m, C36mW at 500 mM NaCl also leads to

larger oligomers faster than under the other conditions, while little to

no aggregation is observed in the presence of CaCl2. For A99-d/Åq.

and A99-d/Madrid, the opposite trend is obtained compared with

C36m/C36mW: aggregation is slowest in the presence of NaCl and it

is fastest without any ions and in the presence of 500 mM CaCl2. In

particular, when no ions were added, the largest average oligomer size

(tetramers and pentamers for a short time) was detected. The largest

oligomer size decreased significantly as ions were added to the sys-

tem, indicating their efficiency in screening charge–charge interac-

tions that drive the initial aggregation process. For this, Ca2+ is more

effective than the single-charged Na+. However, it should be noted

that with A99-d the aggregation is generally slower than with C36m

and C36mW, which agrees with our previous findings.13

3.6 | Aggregation pathways

A more detailed understanding of the aggregation pathways is pro-

vided by transition networks as shown in Figure 9. Here, the nodes

indicate the state of Aβ16–22 categorized by the oligomer size (vertical

axis) and the β-sheet content (horizontal axis). The size of the nodes

reflects the population of the different Aβ16–22 oligomer states, and

the number of transitions between them is shown by (undirected)

edges of different thickness. The transition networks reveal significant

differences between the different protein and ion models. With

C36m, the transition networks are dominated by the hexamers

with high β-sheet content; no hexamers with less than 40% β-sheet

content are observed. Here, the presence of 500 mM salt, particularly

CaCl2, caused a slight reduction in β-sheet formation. In terms of for-

mation of Aβ16–22 hexamers, C36m is followed by the C36mW force

field. The A99-d models yielded the lowest population of the Aβ16–22

hexamers. All A99-d/ion combination as well as C36mW led to a high

population of Aβ16–22 monomers with large β-strand content, which

are stabilized by the increased peptide-water dispersion interactions

in these models. This suggests that these monomers could aggregate

to oligomers with a high content of β-sheets, since no internal confor-

mational changes would be required, but the kinetics of aggregation is

very slow. Increasing the NaCl concentration increases the aggrega-

tion in C36mW (and also C36m). It can be assumed that the presence

of the ions replaces some of the peptide-water interactions, weaken-

ing the influence of the water model on the peptide's behavior. As

already explained above, the same argument does not apply to Ca2+.

With A99-d, the amount of β-sheet is also generally high and in com-

bination with the Åq. and JC ion parameters, monomers are the pre-

ferred species. Only for the Madrid ion parameters, the picture

slightly changes in favor of dimers and trimers at 50 mM NaCl, which

as interesting as with these ion parameters the least Aβ16–22-ion inter-

actions were observed. Thus, the interplay between peptide, water

and ions is affected by more than direct interactions that were mea-

sured here. For both the force field and the ion model and type, we

can see that increasing the salt concentration leads to a larger number

of oligomeric states and more interconnectivity in the transition

networks.

3.7 | Interprotein contacts in Aβ16–22 oligomers

We finalize our analysis by discussing the interpeptide residue-residue

contacts. As before, a contact is defined when the distance between

any two non-hydrogen atoms from residues of different Aβ16–22
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peptides falls below 0.5 nm. The results in Figure 10 show that differ-

ent force fields give rise to considerably different interpeptide

contacts. In general, C36m and C36mW yielded more pronounced

contacts connected with ordered oligomer structures than the A99-d

F IGURE 9 Transition networks for the aggregation of Aβ16–22 under different salt conditions (see labels at the top) for different force fields
(see labels on the left). The oligomer size (from monomer to hexamer) is given along the vertical axis and the horizontal axis represents the
β-strand content (divided into five ranges: 0%–20%, 20%–40%, etc.). The size of the nodes is proportional to the population of the state, and the
width of the edges is proportional to the mass flux between the states. For calculating the transition networks, we concatenated three 1 μs
trajectories per system. The results without salt (denoted as “bulk”) obtained with A99-d are only shown once (for A99-d/Åq. in the top row) but
also serve as a reference for A99-d/JC and A99-d/Madrid.
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models. Without salt, both C36m and C36mW led to antiparallel align-

ments of the peptides with K16-E22 contacts due to salt bridge for-

mation between them, which stabilizes this orientation in Aβ16–22

aggregates.12 With A99-d without salt, a tendency for parallel align-

ment is observed instead, yet without K16-K16 or E22-E22 contacts.

Thus, the termini point away in this arrangement and the parallel

alignment is driven by hydrophobic interactions spanning the L17-F20

region, with a dominant F19–F19 interaction.

The inclusion of salt leads to less ordered aggregates in many

cases, as now the ordering electrostatic interactions between the ter-

mini are screened. This applies to C36m, C36mW, and the A99-d

models. Exceptions are the aggregates formed at 500 mM CaCl2

modeled with either C36m or C36mW. For C36m, a clear signature of

parallel β16–22-sheets emerged, that even includes K16-K16 contacts

but no E22-E22 contacts. Here, E22 was found to be bound to Ca2+,

which explains that the parallel alignment became possible, with

F20-F20 as the most dominant contact. Therefore, the different

aggregation kinetics seen for C36m at 500 mM compared with the

other C36m conditions may also be associated with the formation of

a different aggregate morphology. With C36mW, the antiparallel

alignment between the peptides remains the major interaction

pattern, yet to different degrees and a shift by two to three residues

in the antiparallel alignment emerged. This is best seen for C36m at

500 mM CaCl2, where, for instance, K16 of one peptide interacts not

with E22 of the other peptide, but with F19 and F20; L17 interacts

with V17-F20 and so on. For the A99-d models, it is difficult to iden-

tify specific interaction patterns upon the inclusion of ions. Some

exceptions are A99-d/JC where off-register antiparallel β-sheets

formed. For A99-d/Madrid, a tendency for antiparallel alignment is

seen at 50 mM NaCl and 50 mM CaCl2, which turned into a parallel

alignment at 500 mM NaCl and no alignment at all at 500 mM CaCl2.

With A99-d/Åq., there is also no preferred alignment visible. Common

to almost all interaction patterns obtained with A99-d is the high pref-

erence for interactions between two phenylalanine residues, which

must therefore be specific to this force field.

4 | CONCLUSIONS

In this work, we simulated Aβ16–22 as a monomer and as a system

containing six copies of this peptide in the absence and presence of

salt, either NaCl or CaCl2, at different concentrations (50 and

F IGURE 10 Probability of residue-residue contacts (see the color scale on the right) between Aβ16–22 peptides in oligomers under different
salt conditions (see labels at the top) for different force fields (see labels on the left). The results without salt (denoted as “bulk”) obtained with
A99-d are only shown once (for A99-d/Åq. in the top row) but also serve as a reference for A99-d/JC and A99-d/Madrid. The results are
averages over the three simulations per system.
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500 mM) using different protein and ion models to investigate the

effects of ions on the structure and aggregation of Aβ16–22. The struc-

tural results of the Aβ16–22 monomer simulations showed small differ-

ences depending on the ion type, concentration, or model, which may

seem unimportant but proved relevant to the subsequent aggregation.

The structural differences were evident in the NMR dipolar couplings

and secondary structure of monomeric Aβ16–22, and they could be

partly linked to the peptide-ion interactions that are of different

strength in the different models. The most significant structural differ-

ence is that C36m and C36mW predict a lower α-helical propensity

for Aβ16–22 than the A99-d models, which correlates with a smaller

number of intraprotein H-bonds that formed with C36m and C36mW.

These differences are due in part to the protein force fields, but also

in part to the different behavior of the ion models tested. The Ca2+

ion binds with a high probability to E22 in the simulations with C36m

and C36mW, but also with A99-d/Åq., while it does not bind with the

A99-d/Madrid model. This observation correlates with an increase in

α-helix upon a change from Na+ to Ca2+, especially at a salt concen-

tration of 500 mM, in the case of A99-d/Madrid, while E22-Ca2+

interactions seem to counteract helix formation in Aβ16–22. The differ-

ent behavior of Ca2+ is also evident in the interionic interactions

determined by radial distribution functions. In C36m and C36mW, this

ion is much more involved in cation-anion and cation–cation interac-

tions than in the A99-d models or is the case for Na+.

With respect to Aβ16–22 aggregation, we find that three effects

have a relevant impact on the aggregation kinetics and the resulting

aggregate structures. The kinetics is mainly determined by the

peptide-water interactions, with an increase in the van der Waals

interactions between the peptide and water decreasing the rate of

aggregation. This leads to the slowest aggregation with A99-d and the

fastest aggregation with C36m, and C36mW lies between these two

extremes. Small variations in the aggregation speed were caused by

the presence of NaCl and CaCl2 at different concentrations, in partic-

ular by Ca2+, but depending on the Aβ16–22-Ca
2+ binding intensity,

different effects were observed. With C36m, C36mW, and A99-d/Åq,

the aggregation rate is reduced at 500 mM CaCl2, as here, the initial

electrostatic attraction between K16 and E22 from different Aβ16–22

peptides is screened due to Ca2+ binding to E22. With A99-d/Madrid,

where no Ca2+ binding to the peptide was observed, the aggregation

rate is increased, probably by weakening the peptide-water interac-

tions due to the presence of large amounts of ions.

The ions also affect the aggregate morphology, for the same

reasons as the aggregation kinetics is modified. For example, the ori-

entation in the β-sheets changed from antiparallel to parallel when

moving from a condition with no added salt to 500 mM CaCl2 with

C36m, or the antiparallel orientation shifted by two or three residues,

as was the case for C36mW in the presence of NaCl (50 and 500 mM)

and 500 mM CaCl2 with respect to the corresponding salt-free simu-

lation. In the simulations with A99-d, the addition of salt also caused

changes in the resulting aggregate structures. However, the oligomers

are less ordered than those obtained with C36m and C36mW. This is

due to the slightly stronger preference for helical Aβ16–22 structures

observed in the monomer simulations with A99-d, as well as a higher

driving force for aggregation caused by hydrophobic interactions

(in particular F-F assembly) compared with the C36m(W) modeling. In

general, it can be observed that electrostatic interactions play a more

important role in C36m(W) than in the A99-d models, which is evident

from the peptide-ion, ion-ion, and peptide–peptide interactions.

In summary, our results show that not only the choice of protein

force field and water model affect the results of amyloid aggregation

simulations, but also the choice of ion parameters as well as ion con-

centration. However, it is fair to say that the effects of the former are

greater than those of the latter. Which of the force fields and ion

models creates the most realistic results for Aβ16–22 is difficult to

judge due to the missing experimental data for Aβ16–22 monomers.

On the other hand, for A99-d we have previously shown that this

force field does not support modeling of the end product of amyloid

aggregation, that is, amyloid fibrils.13 In the simulations of a minifibril

involving two β-sheet layers with six peptides forming an in-register,

antiparallel βsheet in each layer, the A99-d force field led to the disso-

lution of the minifibril within 300 ns, while with C36m and C36mW

this arrangement remained stable. This agrees with the very slow

aggregation speed found here with A99-d.

The observation that the salt type and concentration impact the

aggregation rate and the resulting structures is of high biological rele-

vance. This is supported by a recent study by Yamazaki et al.59 of

Aβ16–22 aggregation using both experiments and MD simulations.

They demonstrated that the fibrillation kinetics follows the

nucleation-elongation model, in which the aggregation nucleus con-

sists of 6–7 peptide molecules that form two β-sheets that connect

via their hydrophobic surfaces (as also seen here in the hexamers). In

addition, also consistent with our findings, their experimental results

showed that the addition of small amounts of salt or organic solvent

has a significant effect on the fibril morphology, suggesting that elec-

trostatic and hydrophobic interactions are important for fibril forma-

tion and structure selection. In a recent study, we have shown that

the presence of strongly negatively charged glycosaminoglycans can

lead to a depletion of cations in their vicinity as they are in close prox-

imity to the glycosaminoglycans.60 This had a major impact on the Aβ

structure present in the same simulation, which underwent a transi-

tion from disordered to ordered structures due to intrapeptide elec-

trostatic deshielding by the abstraction of Na+, causing the formation

of β-sheet structures. Experimentally, glycosaminoglycans were

observed to promote amyloid aggregation,61 which might also be

related to the local changes in salt concentration by the glycosamino-

glycans, as we have shown here for the aggregation rate of Aβ16–22

by simply changing the salt concentration in the simulation system.

Finally, the finding that changes in aggregate structure can be caused

by changes in ion type and ion concentration is also important with

respect to the polymorphism of amyloid fibrils, which is a remarkable

but still largely unexplained feature of amyloids.62,63
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