001019569 001__ 1019569 001019569 005__ 20250204113743.0 001019569 0247_ $$2doi$$a10.1016/j.apenergy.2023.122132 001019569 0247_ $$2ISSN$$a0306-2619 001019569 0247_ $$2ISSN$$a1872-9118 001019569 0247_ $$2datacite_doi$$a10.34734/FZJ-2023-05506 001019569 0247_ $$2WOS$$aWOS:001092589000001 001019569 037__ $$aFZJ-2023-05506 001019569 082__ $$a620 001019569 1001_ $$0P:(DE-Juel1)185648$$aGutsch, Moritz$$b0$$eCorresponding author$$ufzj 001019569 245__ $$aCosts, carbon footprint, and environmental impacts of lithium-ion batteries – From cathode active material synthesis to cell manufacturing and recycling 001019569 260__ $$aAmsterdam [u.a.]$$bElsevier Science$$c2024 001019569 3367_ $$2DRIVER$$aarticle 001019569 3367_ $$2DataCite$$aOutput Types/Journal article 001019569 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1712577416_27761 001019569 3367_ $$2BibTeX$$aARTICLE 001019569 3367_ $$2ORCID$$aJOURNAL_ARTICLE 001019569 3367_ $$00$$2EndNote$$aJournal Article 001019569 520__ $$aStrong growth in lithium-ion battery (LIB) demand requires a robust understanding of both costs and environmental impacts across the value-chain. Recent announcements of LIB manufacturers to venture into cathode active material (CAM) synthesis and recycling expands the process segments under their influence. However, little research has yet provided combined costs and environmental impact assessments across several segments of the LIB value-chain. To address this gap, we provide a combined cost assessment and life cycle assessment (LCA), covering CAM synthesis, cell manufacturing and hydrometallurgy recycling. 1 kWh cell capacity (NMC811-C) is chosen as functional unit. Results for cell manufacturing in the United States show total cell costs of $94.5 kWh−1, a global warming potential (GWP) of 64.5 kgCO2eq kWh−1, and combined environmental impacts (normalizing and weighing 16 impact categories) of 4.0 × 10−12 kWh−1. Material use contributes 69% to costs and 93% to combined environmental impacts. Energy demand, meanwhile, accounts for 35% of GWP. Initially, hydrometallurgy recycling adds 5 to 10% to total costs, GWP, and environmental impacts. Including recycling credits, as recycled material substitutes new virgin material, shows benefits for recycling. Combined environmental impacts benefit most from recycling (−75%), followed by costs (−44%) and GWP (−37%). Further, we present a comprehensive dashboard which reveals how different scenarios, such as, using wind power instead of grid electricity, influence costs, GWP, and environmental impacts across process segments. Switching to low-carbon energy, for example, reduces GWP more than recycling would. Also, our dashboard shows that recycling or low scrap are more suitable options if reduction of costs or combined environmental impacts is the objective. 001019569 536__ $$0G:(DE-HGF)POF4-1222$$a1222 - Components and Cells (POF4-122)$$cPOF4-122$$fPOF IV$$x0 001019569 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de 001019569 7001_ $$0P:(DE-HGF)0$$aLeker, Jens$$b1 001019569 773__ $$0PERI:(DE-600)2000772-3$$a10.1016/j.apenergy.2023.122132$$gVol. 353, p. 122132 -$$nB$$p122132 -$$tApplied energy$$v353$$x0306-2619$$y2024 001019569 8564_ $$uhttps://juser.fz-juelich.de/record/1019569/files/Costs%2C%20carbon%20footprint%2C%20and%20environmental%20impacts%20of%20lithium-ion%20batteries%20%E2%80%93%20From%20cathode%20active%20material%20synthesis%20to%20cell%20manufacturing%20and%20recycling.pdf$$yOpenAccess 001019569 8564_ $$uhttps://juser.fz-juelich.de/record/1019569/files/Costs%2C%20carbon%20footprint%2C%20and%20environmental%20impacts%20of%20lithium-ion%20batteries%20%E2%80%93%20From%20cathode%20active%20material%20synthesis%20to%20cell%20manufacturing%20and%20recycling.gif?subformat=icon$$xicon$$yOpenAccess 001019569 8564_ $$uhttps://juser.fz-juelich.de/record/1019569/files/Costs%2C%20carbon%20footprint%2C%20and%20environmental%20impacts%20of%20lithium-ion%20batteries%20%E2%80%93%20From%20cathode%20active%20material%20synthesis%20to%20cell%20manufacturing%20and%20recycling.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess 001019569 8564_ $$uhttps://juser.fz-juelich.de/record/1019569/files/Costs%2C%20carbon%20footprint%2C%20and%20environmental%20impacts%20of%20lithium-ion%20batteries%20%E2%80%93%20From%20cathode%20active%20material%20synthesis%20to%20cell%20manufacturing%20and%20recycling.jpg?subformat=icon-180$$xicon-180$$yOpenAccess 001019569 8564_ $$uhttps://juser.fz-juelich.de/record/1019569/files/Costs%2C%20carbon%20footprint%2C%20and%20environmental%20impacts%20of%20lithium-ion%20batteries%20%E2%80%93%20From%20cathode%20active%20material%20synthesis%20to%20cell%20manufacturing%20and%20recycling.jpg?subformat=icon-640$$xicon-640$$yOpenAccess 001019569 8767_ $$d2023-12-18$$eHybrid-OA$$jZahlung angewiesen$$zKostenstelle erfragt 001019569 909CO $$ooai:juser.fz-juelich.de:1019569$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$popen_access$$popenaire 001019569 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)185648$$aForschungszentrum Jülich$$b0$$kFZJ 001019569 9131_ $$0G:(DE-HGF)POF4-122$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1222$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vElektrochemische Energiespeicherung$$x0 001019569 9141_ $$y2024 001019569 915pc $$0PC:(DE-HGF)0000$$2APC$$aAPC keys set 001019569 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2023-08-25 001019569 915__ $$0LIC:(DE-HGF)CCBYNC4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial CC BY-NC 4.0 001019569 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2023-08-25 001019569 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess 001019569 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bAPPL ENERG : 2022$$d2025-01-02 001019569 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2025-01-02 001019569 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2025-01-02 001019569 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2025-01-02 001019569 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2025-01-02 001019569 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2025-01-02 001019569 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2025-01-02 001019569 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2025-01-02 001019569 915__ $$0StatID:(DE-HGF)9910$$2StatID$$aIF >= 10$$bAPPL ENERG : 2022$$d2025-01-02 001019569 9201_ $$0I:(DE-Juel1)IEK-12-20141217$$kIEK-12$$lHelmholtz-Institut Münster Ionenleiter für Energiespeicher$$x0 001019569 9801_ $$aAPC 001019569 9801_ $$aFullTexts 001019569 980__ $$ajournal 001019569 980__ $$aVDB 001019569 980__ $$aUNRESTRICTED 001019569 980__ $$aI:(DE-Juel1)IEK-12-20141217 001019569 980__ $$aAPC 001019569 981__ $$aI:(DE-Juel1)IMD-4-20141217