001     1019581
005     20240712113253.0
024 7 _ |a 10.34734/FZJ-2023-05516
|2 datacite_doi
037 _ _ |a FZJ-2023-05516
041 _ _ |a English
100 1 _ |a Pape, Sharon
|0 P:(DE-Juel1)188966
|b 0
|e Corresponding author
111 2 _ |a European Electrolyser and Fuel Cell Forum 2023
|g EFCF2023
|c Luzern
|d 2023-07-04 - 2023-07-07
|w Switzerland
245 _ _ |a Degradation Assessment for Dynamic Operation of Alkaline Electrolysis Powered by Renewable Energy
260 _ _ |c 2023
336 7 _ |a Abstract
|b abstract
|m abstract
|0 PUB:(DE-HGF)1
|s 1705562220_14921
|2 PUB:(DE-HGF)
336 7 _ |a Conference Paper
|0 33
|2 EndNote
336 7 _ |a INPROCEEDINGS
|2 BibTeX
336 7 _ |a conferenceObject
|2 DRIVER
336 7 _ |a Output Types/Conference Abstract
|2 DataCite
336 7 _ |a OTHER
|2 ORCID
520 _ _ |a Alkaline water electrolysis is considered a core technology for producing hydrogen on a large scale using renewable energy. Renewable energies characteristically exhibit a fluctuating and highly dynamic behavior. However, conventional electrolyzers are designed to operate under constant process conditions. To couple alkaline water electrolysis with renewable energy, efforts are needed to understand how dynamic operation impacts the durability of the electrolysis system.This work aims to evaluate the influence of intermittent operation on the durability of an alkaline electrolyzer. Within this study, the behavior of bare nickel electrodes responding to fluctuating potentials was evaluated. Several influencing factors were evaluated to investigate durability. Among these factors were various load types such as the holding of the potential and the cycling of the potential in triangular wave or square wave (Figures 1a-c). Furthermore, the response to a renewable energy input was investigated (Figure 1d). Ultimately, this will allow to elucidate the relation between performance losses during potential cycling and renewable load profiles.Overall, the research is critical in understanding how long-term performance will be affected as electrolysis shifts to an intermittent renewable power supply. The observations can provide metrics regarding future types and degrees of operational load to limit performance loss and can help assess long-term durability.
536 _ _ |a 1231 - Electrochemistry for Hydrogen (POF4-123)
|0 G:(DE-HGF)POF4-1231
|c POF4-123
|f POF IV
|x 0
700 1 _ |a Keller, Roger
|0 P:(DE-Juel1)129865
|b 1
700 1 _ |a Seidler, Florian
|0 P:(DE-Juel1)188694
|b 2
700 1 _ |a Müller, Martin
|0 P:(DE-Juel1)129892
|b 3
700 1 _ |a Mechler, Anna
|0 P:(DE-Juel1)175122
|b 4
700 1 _ |a Lohmann-Richters, Felix
|0 P:(DE-Juel1)176513
|b 5
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/1019581/files/AEL-DegradationAccelerationAssessment_Pape_Sharon.pdf
856 4 _ |y OpenAccess
|x icon
|u https://juser.fz-juelich.de/record/1019581/files/AEL-DegradationAccelerationAssessment_Pape_Sharon.gif?subformat=icon
856 4 _ |y OpenAccess
|x icon-1440
|u https://juser.fz-juelich.de/record/1019581/files/AEL-DegradationAccelerationAssessment_Pape_Sharon.jpg?subformat=icon-1440
856 4 _ |y OpenAccess
|x icon-180
|u https://juser.fz-juelich.de/record/1019581/files/AEL-DegradationAccelerationAssessment_Pape_Sharon.jpg?subformat=icon-180
856 4 _ |y OpenAccess
|x icon-640
|u https://juser.fz-juelich.de/record/1019581/files/AEL-DegradationAccelerationAssessment_Pape_Sharon.jpg?subformat=icon-640
909 C O |o oai:juser.fz-juelich.de:1019581
|p openaire
|p open_access
|p VDB
|p driver
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)188966
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)129865
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)188694
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)129892
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)175122
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)176513
913 1 _ |a DE-HGF
|b Forschungsbereich Energie
|l Materialien und Technologien für die Energiewende (MTET)
|1 G:(DE-HGF)POF4-120
|0 G:(DE-HGF)POF4-123
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-100
|4 G:(DE-HGF)POF
|v Chemische Energieträger
|9 G:(DE-HGF)POF4-1231
|x 0
914 1 _ |y 2023
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-14-20191129
|k IEK-14
|l Elektrochemische Verfahrenstechnik
|x 0
920 1 _ |0 I:(DE-Juel1)IEK-9-20110218
|k IEK-9
|l Grundlagen der Elektrochemie
|x 1
920 1 _ |0 I:(DE-Juel1)IEK-5-20101013
|k IEK-5
|l Photovoltaik
|x 2
980 1 _ |a FullTexts
980 _ _ |a abstract
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-14-20191129
980 _ _ |a I:(DE-Juel1)IEK-9-20110218
980 _ _ |a I:(DE-Juel1)IEK-5-20101013
981 _ _ |a I:(DE-Juel1)IET-4-20191129
981 _ _ |a I:(DE-Juel1)IET-1-20110218
981 _ _ |a I:(DE-Juel1)IMD-3-20101013
981 _ _ |a I:(DE-Juel1)IET-4-20191129
981 _ _ |a I:(DE-Juel1)IET-1-20110218


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21