001019596 001__ 1019596
001019596 005__ 20240701202019.0
001019596 0247_ $$2doi$$a10.3390/microorganisms11122994
001019596 0247_ $$2datacite_doi$$a10.34734/FZJ-2023-05529
001019596 0247_ $$2pmid$$a38138138
001019596 0247_ $$2WOS$$aWOS:001131253900001
001019596 037__ $$aFZJ-2023-05529
001019596 082__ $$a570
001019596 1001_ $$0P:(DE-HGF)0$$aBlifernez-Klassen, Olga$$b0
001019596 245__ $$aMicrobial Diversity and Community Structure of Wastewater-Driven Microalgal Biofilms
001019596 260__ $$aBasel$$bMDPI$$c2023
001019596 3367_ $$2DRIVER$$aarticle
001019596 3367_ $$2DataCite$$aOutput Types/Journal article
001019596 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1719815474_27748
001019596 3367_ $$2BibTeX$$aARTICLE
001019596 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001019596 3367_ $$00$$2EndNote$$aJournal Article
001019596 520__ $$aDwindling water sources increase the need for efficient wastewater treatment. Solardrivenalgal turf scrubber (ATS) system may remediate wastewater by supporting the developmentand growth of periphytic microbiomes that function and interact in a highly dynamic mannerthrough symbiotic interactions. Using ITS and 16S rRNA gene amplicon sequencing, we profiledthe microbial communities of four microbial biofilms from ATS systems operated with municipalwastewater (mWW), diluted cattle and pig manure (CattleM and PigM), and biogas plant effluentsupernatant (BGE) in comparison to the initial inocula and the respective wastewater substrates.The wastewater-driven biofilms differed significantly in their biodiversity and structure, exhibitingan inocula-independent but substrate-dependent establishment of the microbial communities.The prokaryotic communities were comparable among themselves and with other microbiomes ofaquatic environments and were dominated by metabolically flexible prokaryotes such as nitrifiers,polyphosphate-accumulating and algicide-producing microorganisms, and anoxygenic photoautotrophs.Striking differences occurred in eukaryotic communities: While the mWW biofilm wascharacterized by high biodiversity and many filamentous (benthic) microalgae, the agriculturalwastewater-fed biofilms consisted of less diverse communities with few benthic taxa mainly inhabitedby unicellular chlorophytes and saprophytes/parasites. This study advances our understandingof the microbiome structure and function within the ATS-based wastewater treatment process.
001019596 536__ $$0G:(DE-HGF)POF4-2152$$a2152 - Water resources and the environment (POF4-215)$$cPOF4-215$$fPOF IV$$x0
001019596 536__ $$0G:(DE-HGF)POF4-2172$$a2172 - Utilization of renewable carbon and energy sources and engineering of ecosystem functions (POF4-217)$$cPOF4-217$$fPOF IV$$x1
001019596 7001_ $$0P:(DE-HGF)0$$aHassa, Julia$$b1
001019596 7001_ $$0P:(DE-Juel1)179235$$aReinecke-Levi, Diana$$b2
001019596 7001_ $$0P:(DE-HGF)0$$aBusche, Tobias$$b3
001019596 7001_ $$0P:(DE-HGF)0$$aKlassen, Viktor$$b4
001019596 7001_ $$0P:(DE-HGF)0$$aKruse, Olaf$$b5$$eCorresponding author
001019596 770__ $$aMicrobial Ecosystems in Water and Wastewater Treatment$$z2076-2607
001019596 773__ $$0PERI:(DE-600)2720891-6$$a10.3390/microorganisms11122994$$n12$$p20$$tMicroorganisms$$v11$$x2076-2607$$y2023
001019596 8564_ $$uhttps://juser.fz-juelich.de/record/1019596/files/Microbial%20Diversity%20and%20Community%20Structure%20of%20Wastewater-Driven%20Microalgal%20Biofilms.pdf$$yOpenAccess
001019596 8564_ $$uhttps://juser.fz-juelich.de/record/1019596/files/Microbial%20Diversity%20and%20Community%20Structure%20of%20Wastewater-Driven%20Microalgal%20Biofilms.gif?subformat=icon$$xicon$$yOpenAccess
001019596 8564_ $$uhttps://juser.fz-juelich.de/record/1019596/files/Microbial%20Diversity%20and%20Community%20Structure%20of%20Wastewater-Driven%20Microalgal%20Biofilms.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
001019596 8564_ $$uhttps://juser.fz-juelich.de/record/1019596/files/Microbial%20Diversity%20and%20Community%20Structure%20of%20Wastewater-Driven%20Microalgal%20Biofilms.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
001019596 8564_ $$uhttps://juser.fz-juelich.de/record/1019596/files/Microbial%20Diversity%20and%20Community%20Structure%20of%20Wastewater-Driven%20Microalgal%20Biofilms.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
001019596 909CO $$ooai:juser.fz-juelich.de:1019596$$pVDB$$popen_access$$pdnbdelivery$$pdriver$$popenaire
001019596 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)179235$$aForschungszentrum Jülich$$b2$$kFZJ
001019596 9131_ $$0G:(DE-HGF)POF4-215$$1G:(DE-HGF)POF4-210$$2G:(DE-HGF)POF4-200$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-2152$$aDE-HGF$$bForschungsbereich Erde und Umwelt$$lErde im Wandel – Unsere Zukunft nachhaltig gestalten$$vTerrestrische Umwelt und Wasserressourcen: Dynamiken unter globalem Wandel und Klimawandel$$x0
001019596 9131_ $$0G:(DE-HGF)POF4-217$$1G:(DE-HGF)POF4-210$$2G:(DE-HGF)POF4-200$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-2172$$aDE-HGF$$bForschungsbereich Erde und Umwelt$$lErde im Wandel – Unsere Zukunft nachhaltig gestalten$$vFür eine nachhaltige Bio-Ökonomie – von Ressourcen zu Produkten$$x1
001019596 9141_ $$y2023
001019596 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-08-26
001019596 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2023-08-26
001019596 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2023-08-26
001019596 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2023-08-26
001019596 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
001019596 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bMICROORGANISMS : 2022$$d2023-08-26
001019596 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2023-04-12T15:01:16Z
001019596 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2023-04-12T15:01:16Z
001019596 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2023-08-26
001019596 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2023-08-26
001019596 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2023-08-26
001019596 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2023-08-26
001019596 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001019596 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Anonymous peer review$$d2023-04-12T15:01:16Z
001019596 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2023-08-26
001019596 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2023-08-26
001019596 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central$$d2023-08-26
001019596 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2023-08-26
001019596 920__ $$lyes
001019596 9201_ $$0I:(DE-Juel1)IBG-2-20101118$$kIBG-2$$lPflanzenwissenschaften$$x0
001019596 980__ $$ajournal
001019596 980__ $$aVDB
001019596 980__ $$aI:(DE-Juel1)IBG-2-20101118
001019596 980__ $$aUNRESTRICTED
001019596 9801_ $$aFullTexts