001019677 001__ 1019677
001019677 005__ 20240102203541.0
001019677 0247_ $$2datacite_doi$$a10.34734/FZJ-2023-05534
001019677 037__ $$aFZJ-2023-05534
001019677 041__ $$aEnglish
001019677 1001_ $$0P:(DE-Juel1)129303$$aChlubek, Antonia$$b0$$eCorresponding author
001019677 1112_ $$a2nd Workshop Carbon Allocation in Plants$$cVersailles$$d2023-11-20 - 2023-11-21$$wFrance
001019677 245__ $$aA routine Carbon-11-PET workflow for in vivo measurements of plants: from a custom plant facility to data analysis
001019677 260__ $$c2023
001019677 3367_ $$033$$2EndNote$$aConference Paper
001019677 3367_ $$2BibTeX$$aINPROCEEDINGS
001019677 3367_ $$2DRIVER$$aconferenceObject
001019677 3367_ $$2ORCID$$aCONFERENCE_POSTER
001019677 3367_ $$2DataCite$$aOutput Types/Conference Poster
001019677 3367_ $$0PUB:(DE-HGF)24$$2PUB:(DE-HGF)$$aPoster$$bposter$$mposter$$s1704197768_26654$$xOther
001019677 520__ $$aPositron Emission Tomography (PET) is a potent tool in plant sciences to measure allocation and transport processes in vivo. Especially the radioisotope Carbon-11 is of major interest as it can be administered as 11CO2 to leaves and used as a tracer to monitor the flow of photoassimilates within complex 3D structures such as roots.However, in the past, PET studies on plants have primarily been conducted on clinical or preclinical PET scanners. These scanners have the drawback of being horizontally orientated and typically not optimized for a plant-friendly environment, including suboptimal temperature, humidity and light conditions. Studies conducted on plant dedicated scanners have often lacked a full characterization, quantitative image reconstruction (including attenuation correction of individual samples) and data analysis pipeline.In this poster we present the establishment of a complete routine Carbon-11 PET pipeline for plants. This pipeline begins with a custom PET facility for plants, which comprises the production and administration of 11CO2, gas exchange measurement, and a climate chamber with a fully characterized and calibrated plant-dedicated PET scanner, the phenoPET. It also includes workflow protocols to measure up to four plants per day and ensures that data from individual plants in measuring series can be reliably and quantitatively compared. Additionally, the application of an in-house developed compartmental model for long-distance transport allows us to quantify and analyze flow velocities of the tracer and exchange rates with other tissues along the transport pathways, including error calculation.
001019677 536__ $$0G:(DE-HGF)POF4-2173$$a2173 - Agro-biogeosystems: controls, feedbacks and impact (POF4-217)$$cPOF4-217$$fPOF IV$$x0
001019677 7001_ $$0P:(DE-Juel1)131784$$aPflugfelder, Daniel$$b1
001019677 7001_ $$0P:(DE-Juel1)129360$$aMetzner, Ralf$$b2
001019677 7001_ $$0P:(DE-Juel1)129333$$aHuber, Gregor$$b3
001019677 7001_ $$0P:(DE-Juel1)129402$$aSchurr, Ulrich$$b4
001019677 7001_ $$0P:(DE-Juel1)171304$$aHinz, Carsten$$b5
001019677 7001_ $$0P:(DE-Juel1)165733$$aKoller, Robert$$b6
001019677 7001_ $$0P:(DE-Juel1)131791$$aScheins, Jürgen$$b7
001019677 7001_ $$0P:(DE-Juel1)133944$$aStreun, Matthias$$b8
001019677 8564_ $$uhttps://juser.fz-juelich.de/record/1019677/files/plant%20PET%20workflow_Poster%20Versailles%202023_chlubek.pdf$$yOpenAccess
001019677 8564_ $$uhttps://juser.fz-juelich.de/record/1019677/files/plant%20PET%20workflow_Poster%20Versailles%202023_chlubek.gif?subformat=icon$$xicon$$yOpenAccess
001019677 8564_ $$uhttps://juser.fz-juelich.de/record/1019677/files/plant%20PET%20workflow_Poster%20Versailles%202023_chlubek.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
001019677 8564_ $$uhttps://juser.fz-juelich.de/record/1019677/files/plant%20PET%20workflow_Poster%20Versailles%202023_chlubek.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
001019677 8564_ $$uhttps://juser.fz-juelich.de/record/1019677/files/plant%20PET%20workflow_Poster%20Versailles%202023_chlubek.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
001019677 909CO $$ooai:juser.fz-juelich.de:1019677$$popenaire$$popen_access$$pVDB$$pdriver
001019677 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129303$$aForschungszentrum Jülich$$b0$$kFZJ
001019677 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131784$$aForschungszentrum Jülich$$b1$$kFZJ
001019677 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129360$$aForschungszentrum Jülich$$b2$$kFZJ
001019677 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129333$$aForschungszentrum Jülich$$b3$$kFZJ
001019677 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129402$$aForschungszentrum Jülich$$b4$$kFZJ
001019677 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)171304$$aForschungszentrum Jülich$$b5$$kFZJ
001019677 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)165733$$aForschungszentrum Jülich$$b6$$kFZJ
001019677 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131791$$aForschungszentrum Jülich$$b7$$kFZJ
001019677 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)133944$$aForschungszentrum Jülich$$b8$$kFZJ
001019677 9131_ $$0G:(DE-HGF)POF4-217$$1G:(DE-HGF)POF4-210$$2G:(DE-HGF)POF4-200$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-2173$$aDE-HGF$$bForschungsbereich Erde und Umwelt$$lErde im Wandel – Unsere Zukunft nachhaltig gestalten$$vFür eine nachhaltige Bio-Ökonomie – von Ressourcen zu Produkten$$x0
001019677 9141_ $$y2023
001019677 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001019677 920__ $$lyes
001019677 9201_ $$0I:(DE-Juel1)IBG-2-20101118$$kIBG-2$$lPflanzenwissenschaften$$x0
001019677 980__ $$aposter
001019677 980__ $$aVDB
001019677 980__ $$aUNRESTRICTED
001019677 980__ $$aI:(DE-Juel1)IBG-2-20101118
001019677 9801_ $$aFullTexts