001     1019677
005     20240102203541.0
024 7 _ |a 10.34734/FZJ-2023-05534
|2 datacite_doi
037 _ _ |a FZJ-2023-05534
041 _ _ |a English
100 1 _ |a Chlubek, Antonia
|0 P:(DE-Juel1)129303
|b 0
|e Corresponding author
111 2 _ |a 2nd Workshop Carbon Allocation in Plants
|c Versailles
|d 2023-11-20 - 2023-11-21
|w France
245 _ _ |a A routine Carbon-11-PET workflow for in vivo measurements of plants: from a custom plant facility to data analysis
260 _ _ |c 2023
336 7 _ |a Conference Paper
|0 33
|2 EndNote
336 7 _ |a INPROCEEDINGS
|2 BibTeX
336 7 _ |a conferenceObject
|2 DRIVER
336 7 _ |a CONFERENCE_POSTER
|2 ORCID
336 7 _ |a Output Types/Conference Poster
|2 DataCite
336 7 _ |a Poster
|b poster
|m poster
|0 PUB:(DE-HGF)24
|s 1704197768_26654
|2 PUB:(DE-HGF)
|x Other
520 _ _ |a Positron Emission Tomography (PET) is a potent tool in plant sciences to measure allocation and transport processes in vivo. Especially the radioisotope Carbon-11 is of major interest as it can be administered as 11CO2 to leaves and used as a tracer to monitor the flow of photoassimilates within complex 3D structures such as roots.However, in the past, PET studies on plants have primarily been conducted on clinical or preclinical PET scanners. These scanners have the drawback of being horizontally orientated and typically not optimized for a plant-friendly environment, including suboptimal temperature, humidity and light conditions. Studies conducted on plant dedicated scanners have often lacked a full characterization, quantitative image reconstruction (including attenuation correction of individual samples) and data analysis pipeline.In this poster we present the establishment of a complete routine Carbon-11 PET pipeline for plants. This pipeline begins with a custom PET facility for plants, which comprises the production and administration of 11CO2, gas exchange measurement, and a climate chamber with a fully characterized and calibrated plant-dedicated PET scanner, the phenoPET. It also includes workflow protocols to measure up to four plants per day and ensures that data from individual plants in measuring series can be reliably and quantitatively compared. Additionally, the application of an in-house developed compartmental model for long-distance transport allows us to quantify and analyze flow velocities of the tracer and exchange rates with other tissues along the transport pathways, including error calculation.
536 _ _ |a 2173 - Agro-biogeosystems: controls, feedbacks and impact (POF4-217)
|0 G:(DE-HGF)POF4-2173
|c POF4-217
|f POF IV
|x 0
700 1 _ |a Pflugfelder, Daniel
|0 P:(DE-Juel1)131784
|b 1
700 1 _ |a Metzner, Ralf
|0 P:(DE-Juel1)129360
|b 2
700 1 _ |a Huber, Gregor
|0 P:(DE-Juel1)129333
|b 3
700 1 _ |a Schurr, Ulrich
|0 P:(DE-Juel1)129402
|b 4
700 1 _ |a Hinz, Carsten
|0 P:(DE-Juel1)171304
|b 5
700 1 _ |a Koller, Robert
|0 P:(DE-Juel1)165733
|b 6
700 1 _ |a Scheins, Jürgen
|0 P:(DE-Juel1)131791
|b 7
700 1 _ |a Streun, Matthias
|0 P:(DE-Juel1)133944
|b 8
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/1019677/files/plant%20PET%20workflow_Poster%20Versailles%202023_chlubek.pdf
856 4 _ |y OpenAccess
|x icon
|u https://juser.fz-juelich.de/record/1019677/files/plant%20PET%20workflow_Poster%20Versailles%202023_chlubek.gif?subformat=icon
856 4 _ |y OpenAccess
|x icon-1440
|u https://juser.fz-juelich.de/record/1019677/files/plant%20PET%20workflow_Poster%20Versailles%202023_chlubek.jpg?subformat=icon-1440
856 4 _ |y OpenAccess
|x icon-180
|u https://juser.fz-juelich.de/record/1019677/files/plant%20PET%20workflow_Poster%20Versailles%202023_chlubek.jpg?subformat=icon-180
856 4 _ |y OpenAccess
|x icon-640
|u https://juser.fz-juelich.de/record/1019677/files/plant%20PET%20workflow_Poster%20Versailles%202023_chlubek.jpg?subformat=icon-640
909 C O |o oai:juser.fz-juelich.de:1019677
|p openaire
|p open_access
|p VDB
|p driver
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)129303
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)131784
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)129360
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)129333
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)129402
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)171304
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)165733
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 7
|6 P:(DE-Juel1)131791
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 8
|6 P:(DE-Juel1)133944
913 1 _ |a DE-HGF
|b Forschungsbereich Erde und Umwelt
|l Erde im Wandel – Unsere Zukunft nachhaltig gestalten
|1 G:(DE-HGF)POF4-210
|0 G:(DE-HGF)POF4-217
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-200
|4 G:(DE-HGF)POF
|v Für eine nachhaltige Bio-Ökonomie – von Ressourcen zu Produkten
|9 G:(DE-HGF)POF4-2173
|x 0
914 1 _ |y 2023
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IBG-2-20101118
|k IBG-2
|l Pflanzenwissenschaften
|x 0
980 _ _ |a poster
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IBG-2-20101118
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21