001019737 001__ 1019737
001019737 005__ 20240709082204.0
001019737 037__ $$aFZJ-2023-05568
001019737 041__ $$aEnglish
001019737 1001_ $$0P:(DE-Juel1)161348$$aSchierholz, Roland$$b0$$eCorresponding author
001019737 1112_ $$aMicroscopy Conference$$cDarmstadt$$d2023-02-26 - 2023-03-02$$gMC2023$$wGermany
001019737 245__ $$a3D-microstructure of spindle-like Li1Ti2(PO4)3 particles revealed by electron microscopy
001019737 260__ $$c2023
001019737 3367_ $$033$$2EndNote$$aConference Paper
001019737 3367_ $$2BibTeX$$aINPROCEEDINGS
001019737 3367_ $$2DRIVER$$aconferenceObject
001019737 3367_ $$2ORCID$$aCONFERENCE_POSTER
001019737 3367_ $$2DataCite$$aOutput Types/Conference Poster
001019737 3367_ $$0PUB:(DE-HGF)24$$2PUB:(DE-HGF)$$aPoster$$bposter$$mposter$$s1705060455_20197$$xOther
001019737 520__ $$a1. Introduction Pure Li1Ti2(PO4)3 (LTP) is an anode material with NASICON structure and a lithiation potential of 2.31 V.[1] This potential fits the electrochemical stability window of the promising isostructural solid state electrolyte Li1+xAlxTi2-x(PO4)3 (LATP, which is obtained by trivalent substitution and application in an all-phosphate solid state battery has been demonstrated.[2] Comparison of different synthesis methods revealed an enhanced cycling performance of solvothermally prepared LTP with spindle-like particles of 2 – 5 µm size compared to the same material prepared by sol-gel based Pecchini method.[3] 2. ObjectivesScanning electron microscopy (SEM) suggests that spindle-like particles are formed by sub particles of about 300 nm size, but as only the surface is accessible by SEM the origin of the enhanced performance remains unclear. With focused ion beam (FIB) and (Scanning) Transmission Electron Microscopy the inner volume can be characterized to give a complete picture of the particles crystal and microstructure as well as its local chemical composition. 3. Materials and methodsThe particles were synthesized by solvothermal reaction, consecutively vacuum dried and annealed at 800 °C.[3] These particles were then dispersed in ethanol and a droplet was put on a silicon wafer for FIB-SEM experiments. FIB tomography and TEM-lamella preparation were conducted with a Helios Nanolab 460F1, FEI, Netherlands.[4] TEM and STEM analysis was conducted in a Tecnai F20 and a Titan G2 Crewley.[5]4. ResultsSEM imaging shows the morphology, with sub particles forming a dumbbell like particle, and already provides hints for the presence of two secondary phases, on nanoparticles, the other a bulky phase with different surface morphology. The presence oof different phases is approved by chemical contrast in BSE-images of cross sections and STEM HAADF imaging. STEM-EDS gives an estimate of the chemical compositions which is completed by STEM-EELS for the detection of Lithium. HRTEM and HRSTEM could then identify the crystallographic structures of these secondary phases to be TiO2 anatase for the nanoparticles and LiTiPO5 (Pnma ICSD #153522) for the bulky secondary phase. FIB-tomography revealed that the majority of the TiO2 nanoparticles are interconnected.5. ConclusionsThe complex microstructure of the spindle-like LTP particles can only be solved by a combination of FIB-tomography and STEM-analysis. The three-dimensional network of TiO2-nanoparticles seem to improve the cycling behavior, as it may enhance the diffusion and can also contribute to capacity and is no dead material.[6] [1] S. Yu et al., ACS Appl. Mater. Interfaces (2018) Vol. 10, No. 26 p. 22264-22277 https://doi.org/10.1021/acsami.8b05902 [2] H. Aono et al., Journal of The Electrochemical Society , (1990) 137, 4, p. 1023-1027 https://doi.org/10.1149/1.2086597 [3] S. Yu et al., ChemElectroChem (2016) Vol. 3, No. 7, p. 1157-1169 https://doi.org/10.1002/celc.201600125 [4] M. Kruth et al., Journal of large-scale research facilities JLSRF (2016) 2, A59 https://doi.org/10.17815/jlsrf-2-105 [5] A. Kovács et al., Journal of large-scale research facilities JLSRF (2016) 2, A43 https://doi.org/10.17815/jlsrf-2-68 [6] M. Madian et al., Batteries (2018) 4, 7, https://doi.org/10.3390/batteries4010007 [7] M.L. Sushko Mechanism of Li+/Electron Conductivity in Rutile and Anatase TiO2 Nanoparticles J. Phys. Chem. C , (2012) 114, 47 American Chemical Society, p. 20277-20283 https://doi.org/10.1021/jp107982c Figure 1: SEM-BSE image of a typical spindle-like LTP-particle.
001019737 536__ $$0G:(DE-HGF)POF4-1121$$a1121 - Digitalization and Systems Technology for Flexibility Solutions (POF4-112)$$cPOF4-112$$fPOF IV$$x0
001019737 588__ $$aDataset connected to DataCite
001019737 7001_ $$0P:(DE-Juel1)164430$$aDzieciol, Krzysztof$$b1
001019737 7001_ $$0P:(DE-Juel1)161208$$aTempel, Hermann$$b2
001019737 7001_ $$0P:(DE-Juel1)157700$$aKungl, Hans$$b3
001019737 7001_ $$0P:(DE-Juel1)156123$$aEichel, Rüdiger-A.$$b4$$ufzj
001019737 7001_ $$0P:(DE-Juel1)176830$$aZhang, Qian$$b5
001019737 8564_ $$uhttps://www.1kcloud.com/ep163f8b00c921bb/#0
001019737 909CO $$ooai:juser.fz-juelich.de:1019737$$pVDB
001019737 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)161348$$aForschungszentrum Jülich$$b0$$kFZJ
001019737 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)164430$$aForschungszentrum Jülich$$b1$$kFZJ
001019737 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)161208$$aForschungszentrum Jülich$$b2$$kFZJ
001019737 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)157700$$aForschungszentrum Jülich$$b3$$kFZJ
001019737 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)156123$$aForschungszentrum Jülich$$b4$$kFZJ
001019737 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)156123$$aRWTH Aachen$$b4$$kRWTH
001019737 9131_ $$0G:(DE-HGF)POF4-112$$1G:(DE-HGF)POF4-110$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1121$$aDE-HGF$$bForschungsbereich Energie$$lEnergiesystemdesign (ESD)$$vDigitalisierung und Systemtechnik$$x0
001019737 9141_ $$y2023
001019737 920__ $$lyes
001019737 9201_ $$0I:(DE-Juel1)IEK-9-20110218$$kIEK-9$$lGrundlagen der Elektrochemie$$x0
001019737 980__ $$aposter
001019737 980__ $$aVDB
001019737 980__ $$aI:(DE-Juel1)IEK-9-20110218
001019737 980__ $$aUNRESTRICTED
001019737 981__ $$aI:(DE-Juel1)IET-1-20110218