001019742 001__ 1019742
001019742 005__ 20240709082205.0
001019742 037__ $$aFZJ-2023-05573
001019742 1001_ $$0P:(DE-Juel1)187524$$aUecker, Jan$$b0$$eCorresponding author$$ufzj
001019742 1112_ $$a18th International Symposium on Solid Oxide Fuel Cells (SOFC-XVIII)$$cBoston$$d2023-05-28 - 2023-06-02$$wUSA
001019742 245__ $$aElectrochemical Activity and Stability of Pure Gadolinium Doped Ceria as Fuel Electrode in Solid Oxide Electrolysis Cells
001019742 260__ $$c2023
001019742 3367_ $$033$$2EndNote$$aConference Paper
001019742 3367_ $$2DataCite$$aOther
001019742 3367_ $$2BibTeX$$aINPROCEEDINGS
001019742 3367_ $$2DRIVER$$aconferenceObject
001019742 3367_ $$2ORCID$$aLECTURE_SPEECH
001019742 3367_ $$0PUB:(DE-HGF)6$$2PUB:(DE-HGF)$$aConference Presentation$$bconf$$mconf$$s1703050355_12022$$xAfter Call
001019742 520__ $$aThe utilization of novel fuel electrode materials could be a valid solution to improve the durability of solid oxide electrolysis cells and the path way for worldwide commercialization. Especially, Ni-free fuel electrodes are promising to eliminate Ni migration as an important degradation mechanism. Gadolinium doped ceria (GDC) is an interesting material due to its good stability towards carbon deposition and the possibility to host electrocatalysis in electrolysis conditions. The present study aims to investigate the performance, electrochemical processes and long-term stability of pure GDC fuel electrode single cells. The results show a lower degradation rate in comparison to similar produced Ni-GDC single cells in steam electrolysis conditions and around 70 % of its performance. Furthermore, the charge transfer in the GDC fuel electrode is identified as the reaction rate-determining process in the GDC fuel electrode single cells.
001019742 536__ $$0G:(DE-HGF)POF4-1232$$a1232 - Power-based Fuels and Chemicals (POF4-123)$$cPOF4-123$$fPOF IV$$x0
001019742 536__ $$0G:(DE-Juel1)HITEC-20170406$$aHITEC - Helmholtz Interdisciplinary Doctoral Training in Energy and Climate Research (HITEC) (HITEC-20170406)$$cHITEC-20170406$$x1
001019742 7001_ $$0P:(DE-Juel1)180285$$aUnachukwu, Ifeanyichukwu Daniel$$b1$$ufzj
001019742 7001_ $$0P:(DE-Juel1)169490$$aVibhu, Vaibhav$$b2
001019742 7001_ $$0P:(DE-Juel1)129936$$aVinke, Izaak C.$$b3
001019742 7001_ $$0P:(DE-Juel1)156123$$aEichel, Rüdiger-A.$$b4$$ufzj
001019742 7001_ $$0P:(DE-Juel1)129952$$ade Haart, L. G. J.$$b5
001019742 909CO $$ooai:juser.fz-juelich.de:1019742$$pVDB
001019742 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)187524$$aForschungszentrum Jülich$$b0$$kFZJ
001019742 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)187524$$aRWTH Aachen$$b0$$kRWTH
001019742 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)180285$$aForschungszentrum Jülich$$b1$$kFZJ
001019742 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)180285$$aRWTH Aachen$$b1$$kRWTH
001019742 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)169490$$aForschungszentrum Jülich$$b2$$kFZJ
001019742 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129936$$aForschungszentrum Jülich$$b3$$kFZJ
001019742 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)156123$$aForschungszentrum Jülich$$b4$$kFZJ
001019742 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)156123$$aRWTH Aachen$$b4$$kRWTH
001019742 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129952$$aForschungszentrum Jülich$$b5$$kFZJ
001019742 9131_ $$0G:(DE-HGF)POF4-123$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1232$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vChemische Energieträger$$x0
001019742 9141_ $$y2023
001019742 920__ $$lyes
001019742 9201_ $$0I:(DE-Juel1)IEK-9-20110218$$kIEK-9$$lGrundlagen der Elektrochemie$$x0
001019742 980__ $$aconf
001019742 980__ $$aVDB
001019742 980__ $$aI:(DE-Juel1)IEK-9-20110218
001019742 980__ $$aUNRESTRICTED
001019742 981__ $$aI:(DE-Juel1)IET-1-20110218