001     1019822
005     20240116205230.0
024 7 _ |a 10.1101/2023.12.05.569848
|2 doi
024 7 _ |a 10.34734/FZJ-2023-05653
|2 datacite_doi
037 _ _ |a FZJ-2023-05653
100 1 _ |a Chen, Pansheng
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Multilayer meta-matching: translating phenotypic prediction models from multiple datasets to small data
260 _ _ |c 2024
336 7 _ |a Preprint
|b preprint
|m preprint
|0 PUB:(DE-HGF)25
|s 1705409559_30837
|2 PUB:(DE-HGF)
336 7 _ |a WORKING_PAPER
|2 ORCID
336 7 _ |a Electronic Article
|0 28
|2 EndNote
336 7 _ |a preprint
|2 DRIVER
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a Output Types/Working Paper
|2 DataCite
520 _ _ |a Resting-state functional connectivity (RSFC) is widely used to predict phenotypic traits in individuals. Large sample sizes can significantly improve prediction accuracies. However, for studies of certain clinical populations or focused neuroscience inquiries, small-scale datasets often remain a necessity. We have previously proposed a "meta-matching" approach to translate prediction models from large datasets to predict new phenotypes in small datasets. We demonstrated large improvement of meta-matching over classical kernel ridge regression (KRR) when translating models from a single source dataset (UK Biobank) to the Human Connectome Project Young Adults (HCP-YA) dataset. In the current study, we propose two meta-matching variants ("meta-matching with dataset stacking" and "multilayer meta-matching") to translate models from multiple source datasets across disparate sample sizes to predict new phenotypes in small target datasets. We evaluate both approaches by translating models trained from five source datasets (with sample sizes ranging from 862 participants to 36,834 participants) to predict phenotypes in the HCP-YA and HCP-Aging datasets. We find that multilayer meta-matching modestly outperforms meta-matching with dataset stacking. Both meta-matching variants perform better than the original "meta-matching with stacking" approach trained only on the UK Biobank. All meta-matching variants outperform classical KRR and transfer learning by a large margin. In fact, KRR is better than classical transfer learning when less than 50 participants are available for finetuning, suggesting the difficulty of classical transfer learning in the very small sample regime. The multilayer meta-matching model is publicly available at GITHUB_LINK.
536 _ _ |a 5251 - Multilevel Brain Organization and Variability (POF4-525)
|0 G:(DE-HGF)POF4-5251
|c POF4-525
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a An, Lijun
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Wulan, Naren
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Zhang, Chen
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Zhang, Shaoshi
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Ooi, Leon Qi Rong
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Kong, Ru
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Chen, Jianzhong
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Wu, Jianxiao
|0 P:(DE-Juel1)177058
|b 8
700 1 _ |a Chopra, Sidhant
|0 P:(DE-HGF)0
|b 9
700 1 _ |a Bzdok, Danilo
|0 P:(DE-Juel1)136848
|b 10
700 1 _ |a Eickhoff, Simon B
|0 P:(DE-Juel1)131678
|b 11
700 1 _ |a Holmes, Avram J
|0 P:(DE-HGF)0
|b 12
700 1 _ |a Yeo, B. T. Thomas
|0 P:(DE-HGF)0
|b 13
|e Corresponding author
773 _ _ |a 10.1101/2023.12.05.569848
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/1019822/files/2023.12.05.569848v1.full.pdf
856 4 _ |y OpenAccess
|x icon
|u https://juser.fz-juelich.de/record/1019822/files/2023.12.05.569848v1.full.gif?subformat=icon
856 4 _ |y OpenAccess
|x icon-1440
|u https://juser.fz-juelich.de/record/1019822/files/2023.12.05.569848v1.full.jpg?subformat=icon-1440
856 4 _ |y OpenAccess
|x icon-180
|u https://juser.fz-juelich.de/record/1019822/files/2023.12.05.569848v1.full.jpg?subformat=icon-180
856 4 _ |y OpenAccess
|x icon-640
|u https://juser.fz-juelich.de/record/1019822/files/2023.12.05.569848v1.full.jpg?subformat=icon-640
909 C O |o oai:juser.fz-juelich.de:1019822
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 8
|6 P:(DE-Juel1)177058
910 1 _ |a HHU Düsseldorf
|0 I:(DE-HGF)0
|b 8
|6 P:(DE-Juel1)177058
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 11
|6 P:(DE-Juel1)131678
910 1 _ |a HHU Düsseldorf
|0 I:(DE-HGF)0
|b 11
|6 P:(DE-Juel1)131678
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-525
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Decoding Brain Organization and Dysfunction
|9 G:(DE-HGF)POF4-5251
|x 0
914 1 _ |y 2024
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
|0 LIC:(DE-HGF)CCBYNCND4
|2 HGFVOC
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)INM-7-20090406
|k INM-7
|l Gehirn & Verhalten
|x 0
980 _ _ |a preprint
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)INM-7-20090406
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21