001019838 001__ 1019838
001019838 005__ 20240102203542.0
001019838 0247_ $$2datacite_doi$$a10.34734/FZJ-2023-05669
001019838 037__ $$aFZJ-2023-05669
001019838 041__ $$aEnglish
001019838 1001_ $$0P:(DE-Juel1)192118$$aOld, Josias$$b0$$eCorresponding author$$ufzj
001019838 1112_ $$aCoping with Errors in Scalable Quantum Computing Systems$$cBad Honnef$$d2023-01-08 - 2023-01-11$$wGermany
001019838 245__ $$aGeneralized Belief Propagation Algorithms for Decoding of Surface Codes
001019838 260__ $$c2023
001019838 3367_ $$033$$2EndNote$$aConference Paper
001019838 3367_ $$2BibTeX$$aINPROCEEDINGS
001019838 3367_ $$2DRIVER$$aconferenceObject
001019838 3367_ $$2ORCID$$aCONFERENCE_POSTER
001019838 3367_ $$2DataCite$$aOutput Types/Conference Poster
001019838 3367_ $$0PUB:(DE-HGF)24$$2PUB:(DE-HGF)$$aPoster$$bposter$$mposter$$s1704191657_26654$$xAfter Call
001019838 520__ $$aBelief propagation (BP) is well-known as a low complexity decoding algorithm with a strong performance for important classes of quantum error correcting codes, e.g. notably for the quantum low-density parity check (LDPC) code class of random expander codes. However, it is also well-known that the performance of BP breaks down when facing topological codes such as the surface code, where naive BP fails entirely to reach a below-threshold regime, i.e. the regime where error correction becomes useful. Previous works have shown, that this can be remedied by resorting to post-processing decoders outside the frame- work of BP. In this work, we present a generalized belief propagation method with an outer re-initialization loop that successfully decodes surface codes, i.e. opposed to naive BP it re- covers the sub-threshold regime known from decoders tailored to the surface code and from statistical-mechanical mappings. We report a threshold of 17% under independent bit-and phase-flip data noise (to be compared to the ideal threshold of 20.6%) and a threshold value of 14% under depolarizing data noise (compared to the ideal threshold of 18.9%), which are on par with thresholds achieved by non- BP post-processing methods.
001019838 536__ $$0G:(DE-HGF)POF4-5221$$a5221 - Advanced Solid-State Qubits and Qubit Systems (POF4-522)$$cPOF4-522$$fPOF IV$$x0
001019838 7001_ $$0P:(DE-Juel1)187504$$aRispler, Manuel$$b1$$ufzj
001019838 8564_ $$uhttps://juser.fz-juelich.de/record/1019838/files/Poster_BadHonnef.pdf$$yOpenAccess
001019838 8564_ $$uhttps://juser.fz-juelich.de/record/1019838/files/Poster_BadHonnef.gif?subformat=icon$$xicon$$yOpenAccess
001019838 8564_ $$uhttps://juser.fz-juelich.de/record/1019838/files/Poster_BadHonnef.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
001019838 8564_ $$uhttps://juser.fz-juelich.de/record/1019838/files/Poster_BadHonnef.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
001019838 8564_ $$uhttps://juser.fz-juelich.de/record/1019838/files/Poster_BadHonnef.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
001019838 909CO $$ooai:juser.fz-juelich.de:1019838$$popenaire$$popen_access$$pVDB$$pdriver
001019838 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)192118$$aForschungszentrum Jülich$$b0$$kFZJ
001019838 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)187504$$aForschungszentrum Jülich$$b1$$kFZJ
001019838 9131_ $$0G:(DE-HGF)POF4-522$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5221$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vQuantum Computing$$x0
001019838 9141_ $$y2023
001019838 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001019838 920__ $$lyes
001019838 9201_ $$0I:(DE-Juel1)PGI-2-20110106$$kPGI-2$$lTheoretische Nanoelektronik$$x0
001019838 980__ $$aposter
001019838 980__ $$aVDB
001019838 980__ $$aUNRESTRICTED
001019838 980__ $$aI:(DE-Juel1)PGI-2-20110106
001019838 9801_ $$aFullTexts