001019850 001__ 1019850
001019850 005__ 20240709112159.0
001019850 037__ $$aFZJ-2023-05681
001019850 1001_ $$0P:(DE-Juel1)167407$$aLi, Yun$$b0$$eCorresponding author$$ufzj
001019850 1112_ $$aWorkshop "Clouds Containing Ice Particles"$$cMainz$$d2023-07-23 - 2023-07-26$$wGermany
001019850 245__ $$aObservational evidence of contrail cirrus in slightly ice-subsaturation
001019850 260__ $$c2023
001019850 3367_ $$033$$2EndNote$$aConference Paper
001019850 3367_ $$2DataCite$$aOther
001019850 3367_ $$2BibTeX$$aINPROCEEDINGS
001019850 3367_ $$2DRIVER$$aconferenceObject
001019850 3367_ $$2ORCID$$aLECTURE_SPEECH
001019850 3367_ $$0PUB:(DE-HGF)6$$2PUB:(DE-HGF)$$aConference Presentation$$bconf$$mconf$$s1706702485_29030$$xOther
001019850 520__ $$aContrail cirrus, including line-shaped contrails, has a net warming effect on theEarth’s climate. Of great importance to estimate their radiative effect is the coverageand mean optical thickness, which are closely associated with the conditions affectingthe formation and microphysical properties of contrail cirrus.This study focuses on cirrus observations over central Europe and the NortheastAtlantic from the airborne ML-CIRRUS campaign in 2014. Contrail cirrus inthe cirrus dataset is identified using: (1) the Schmidt-Appleman-Criterion, whichdetermines whether the environmental conditions are suitable for contrail formation,(2) an aircraft plume detection algorithm that helps identify if a measured airmass originated from aircraft exhaust, and (3) statistical analysis that generates adescription of the general characteristics of contrail and natural cirrus.The microphysical properties (mass mean radius Rice, ice crystal number Nice andice water content IWC) of contrail cirrus and natural cirrus will be described in thiswork together with their occurrence conditions. The preferred atmospheric conditionsof contrail cirrus occurrence are identified. Of particular interest is the existence ofcontrail cirrus in slightly ice-subsaturated environments, where the relative humiditywith respect to ice (RHice) centres around 90 % instead of ice supersaturation, asbelieved hitherto. This also differs from 100 % RHice in natural cirrus. Inspectingthe occurrence frequencies of air masses with RHice > 90 % compared to RHice >100 % from passenger aircraft observations above Europe and the North Atlanticduring the IAGOS-MOZAIC period from 1995 to 2010, about 43 % of the air massesare prone to contrail cirrus formation instead of 32 % found in ice-supersaturatedenvironments. Our findings imply that the avoidance of slight ice-subsaturation to ice-supersaturation at cruising altitudes might further reduce the occurrence of contrailcirrus, thus diminishing the climate impact of contrail cirrus.
001019850 536__ $$0G:(DE-HGF)POF4-2112$$a2112 - Climate Feedbacks (POF4-211)$$cPOF4-211$$fPOF IV$$x0
001019850 536__ $$0G:(DE-HGF)POF4-2111$$a2111 - Air Quality (POF4-211)$$cPOF4-211$$fPOF IV$$x1
001019850 7001_ $$0P:(DE-Juel1)184748$$aMahnke, Christoph$$b1$$ufzj
001019850 7001_ $$0P:(DE-Juel1)129146$$aRohs, Susanne$$b2$$ufzj
001019850 7001_ $$0P:(DE-Juel1)159541$$aBundke, Ulrich$$b3$$ufzj
001019850 7001_ $$0P:(DE-Juel1)129155$$aSpelten, Nicole$$b4$$ufzj
001019850 7001_ $$0P:(DE-HGF)0$$aDekoutsidis, Georgios$$b5
001019850 7001_ $$0P:(DE-HGF)0$$aGroß, Silke$$b6
001019850 7001_ $$0P:(DE-HGF)0$$aVoigt, Christian$$b7
001019850 7001_ $$0P:(DE-HGF)0$$aSchumann, Ulrich$$b8
001019850 7001_ $$0P:(DE-Juel1)136669$$aPetzold, Andreas$$b9$$ufzj
001019850 7001_ $$0P:(DE-Juel1)129131$$aKrämer, Martina$$b10$$ufzj
001019850 909CO $$ooai:juser.fz-juelich.de:1019850$$pVDB
001019850 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)167407$$aForschungszentrum Jülich$$b0$$kFZJ
001019850 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)184748$$aForschungszentrum Jülich$$b1$$kFZJ
001019850 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129146$$aForschungszentrum Jülich$$b2$$kFZJ
001019850 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)159541$$aForschungszentrum Jülich$$b3$$kFZJ
001019850 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129155$$aForschungszentrum Jülich$$b4$$kFZJ
001019850 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a DLR$$b5
001019850 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a DLR$$b6
001019850 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a DLR$$b7
001019850 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a DLR$$b8
001019850 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)136669$$aForschungszentrum Jülich$$b9$$kFZJ
001019850 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129131$$aForschungszentrum Jülich$$b10$$kFZJ
001019850 9131_ $$0G:(DE-HGF)POF4-211$$1G:(DE-HGF)POF4-210$$2G:(DE-HGF)POF4-200$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-2112$$aDE-HGF$$bForschungsbereich Erde und Umwelt$$lErde im Wandel – Unsere Zukunft nachhaltig gestalten$$vDie Atmosphäre im globalen Wandel$$x0
001019850 9131_ $$0G:(DE-HGF)POF4-211$$1G:(DE-HGF)POF4-210$$2G:(DE-HGF)POF4-200$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-2111$$aDE-HGF$$bForschungsbereich Erde und Umwelt$$lErde im Wandel – Unsere Zukunft nachhaltig gestalten$$vDie Atmosphäre im globalen Wandel$$x1
001019850 9141_ $$y2023
001019850 920__ $$lyes
001019850 9201_ $$0I:(DE-Juel1)IEK-7-20101013$$kIEK-7$$lStratosphäre$$x0
001019850 9201_ $$0I:(DE-Juel1)IEK-8-20101013$$kIEK-8$$lTroposphäre$$x1
001019850 980__ $$aconf
001019850 980__ $$aVDB
001019850 980__ $$aI:(DE-Juel1)IEK-7-20101013
001019850 980__ $$aI:(DE-Juel1)IEK-8-20101013
001019850 980__ $$aUNRESTRICTED
001019850 981__ $$aI:(DE-Juel1)ICE-4-20101013
001019850 981__ $$aI:(DE-Juel1)ICE-3-20101013
001019850 981__ $$aI:(DE-Juel1)ICE-3-20101013