
 

Opposite-parity contaminations in lattice nucleon form factors
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The recently introduced parity expanded variational analysis (PEVA) technique allows for the isolation
of baryon eigenstates at finite momentum free from opposite-parity contamination. In this paper, we
establish the formalism for computing form factors of spin-1=2 states using PEVA. Selecting the vector
current, we compare the electromagnetic form factors of the ground state nucleon extracted via this
technique to a conventional parity-projection approach. Our results show a statistically significant
discrepancy between the PEVA and conventional analyses. This indicates that existing calculations of
matrix elements of ground state baryons at finite momentum can be affected by systematic errors of ∼20%
at physical quark masses. The formalism introduced here provides an effective approach to removing these
systematic errors.
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I. INTRODUCTION

Lattice QCD investigations of baryon matrix elements
form a rich and varied field of study. In such investigations,
it is necessary to isolate the state of interest from the tower
of energy levels observed on the lattice. For ground states,
this can be achieved through simple Euclidean time
evolution, but it is common to use more advanced tech-
niques such as multiexponential fits, the summation
method, or variational analysis in order to extract the signal
of interest from earlier time slices and avoid the noise
present in the tails of correlation functions. Regardless of
the specific technique used, when working with spin-1=2
baryons it is typical to perform a simple zero-momentum
parity projection to the parity sector of interest, signifi-
cantly reducing the number of possible contaminating
states before even beginning the analysis. This technique
works perfectly for at-rest baryons, completely removing
opposite-parity contaminations, but for matrix elements
where at least one of the initial or final state is boosted to
nontrivial momentum this is no longer the case. Since
eigenstates with nonzero momentum are not eigenstates of
parity, the parity sectors are no longer well defined and a

naïve parity projection allows opposite-parity states to
reenter the correlation functions.
In Ref. [1], we introduced the parity expanded varia-

tional analysis (PEVA) technique to address this issue,
applying it to the extraction of the nucleon spectrum from
two point correlation functions. In this paper, we extend the
formalism to the computation of matrix elements from
three-point correlation functions, and apply it to the specific
example of calculating the Sachs electric and magnetic
form factors GEðQ2Þ and GMðQ2Þ of the ground-state
proton and neutron. The Sachs form factors describe the
response of a baryon to the vector current. At low Q2, these
form factors give information about the large-scale electro-
magnetic structure of the state, such as its charge radius and
magnetic moment; at high Q2 they give information about
the short-distance internal structure of the state. These form
factors can be determined experimentally to high accuracy.
Computing them in ab-initio lattice QCD provides an
important confrontation of theory with experiment.
In addition, computing these form factors on the lattice

gives us important insight into the underlying physics. For
example, on the lattice it is possible to separately compute
the contributions to the form factors from connected
diagrams (as studied in this paper) and disconnected
diagrams, giving insight into the role sea quarks play in
the structure of the proton and the neutron. One can also
alter the electric charges of the quarks, readily illustrating
the quark-flavor structure of the nucleon.
We probe the values of these form factors by creating an

incoming nucleon on the lattice, having it interact with a
vector current with some momentum transfer q, and then
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annihilating the outgoing nucleon with a fixed momentum
p0. By momentum conservation, the incoming state must
have momentum p ¼ p0 − q. Due to the way we include the
vector current on the lattice, we only consider a small
number of fixed momentum transfers q. By varying the
three-momenta of the outgoing state and hence the incom-
ing state, we gain access to the form factors at a range of

Q2 ¼ q2 −
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

mN
2 þ p02

q
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mN

2 þ p2
q �

2
: ð1Þ

In particular, these boosts provide access to values close to
Q2 ¼ 0, well below jqminj2 ¼ ð2π=LsÞ2, without requiring
the use of twisted boundary conditions. By accessing a range
of values, we gain insight into theQ2 dependence of the form
factors, and can make a comparison with various models
and experiment. By studying the low-Q2 dependence of the
electric form factor, we can make an ab-initio determination
of the charge radiusof theproton. In addition,weobserve that
when considering the contributions from each quark flavor
independently, GEðQ2Þ and GMðQ2Þ have a similar Q2

dependence in the range considered. Hence, we can access
the magnetic dipole moments of the proton and neutron by
taking ratios of the quark-sector form factors.

II. PARITY EXPANDED
VARIATIONAL ANALYSIS

The process of extracting a baryonic excited-state spec-
trum via the PEVA technique is presented in full in Ref. [1].
We present here a brief summary of this process to introduce
the notation and concepts necessary to describe the extension
to the computation of baryonic matrix elements.
We begin with a basis of n conventional spin-1=2

operators fχiðxÞg that couple to the states of interest.
Adopting the Pauli representation of the gamma matrices,
we introduce the PEVA projector Γ�p ≡ 1

4
ðI þ γ4Þ

ðI � iγ5γkp̂kÞ. When acting on a spinor, Γ�p projects to
states of definite helicity. The choice of sign corresponds to
choosing the sign of the projected helicity. For two point
correlation functions, this choice of helicity is arbitrary, and
both formulations of the projector give the same results.
We construct a set of basis operators

χ�p iðxÞ≡ Γ�pχiðxÞ; ð2aÞ

χ�p i0 ðxÞ≡�Γ�pγ
5χiðxÞ: ð2bÞ

We note that we use a Euclidean metric δμν, and hence there
is no need to distinguish between contravariant and
covariant indices.
As described in Ref. [2], three-dimensional smearing of

the operators breaks Lorentz invariance, and as a result can
alter their transformation properties, introducing extra terms
into the operator coupling proportional to γ4. However, due
to the structure of the PEVA projector, Γ�pγ

4 ¼ Γ�p. As a

result, the additional Dirac structure introduced is removed
by thePEVAprojection. The only remaining effect is that due
to the factor of γ5 introduced for the primed operator, the
primed and unprimed operatorsmayhave different couplings
to each state. In the absence of three-dimensional smearing
they differ only by kinematic factors. Hence the PEVA
technique effectively handles the nontrivial Dirac structure
arising from three-dimensional smearing, without the
requirement for any special treatment.
We then seek an optimized set of operators ϕ�p αðxÞ that

each couple strongly to a single energy eigenstate α. These
optimized operators are constructed as linear combinations
of the basis operators

ϕ�p αðxÞ≡
X
i

vα iðpÞχ�p iðxÞ; ð3aÞ

ϕ̄�p αðxÞ≡
X
i

uα iðpÞχ̄�p iðxÞ; ð3bÞ

where the sum is over both the primed and unprimed
operators. The coefficients vα iðpÞ and uα iðpÞ can be found
as the left and right generalized eigenvectors [3,4] of
Gðp; tþ ΔtÞ and Gðp; tÞ, where the correlation matrix

Gijðp; tÞ≡ Tr

�X
x

e−ip·xhΩjχ�p iðxÞχ̄�p ið0ÞjΩi
�
; ð4Þ

with i and j ranging over both the primed and unprimed
operators.
The choice of sign in the PEVA projector has no effect on

the values of these two-point correlation functions. This
follows from the Dirac structure of the baryons and the
standard trace properties of the associated gamma matrices.
We note that the basis operators occur twice in the
correlation function expression, for both creation and
annihilation. In the top-left block, both operators are
unprimed and the contributions from the cross-parity term
in the projector (�iγ5γkp̂k) are zero, so the overall sign is
consistent, regardless of the choice of Γp and Γ−p. In the
bottom-right block, both operators are primed, so two
factors of �1 are introduced by the overall sign of χ�p i0 ðxÞ
in Eq. (2b), and the contributions from the cross-parity term
are once again zero, so the factors of �1 cancel and the
overall sign is consistent. In the off-diagonal blocks, the
contributions to the correlator are only from the cross-parity
term, so there is an overall factor of�1, which cancels with
the factor of �1 from the single primed operator in each of
these blocks. Hence, the values of the two-point correlation
functions will be the same regardless of the choice of Γp or
Γ−p. As a result, the coefficients for constructing ϕþp αðxÞ
and ϕ−p αðxÞ are identical, up to a choice of overall sign of
the eigenvector. We choose the eigenvector sign to ensure
the operators match at zero momentum, where the choice of
�p has no effect on the physics.
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Using the optimized operators, we can construct the
eigenstate-projected two-point correlation function

Gðp; t; αÞ≡ Tr

�X
x

e−ip·xhΩjϕ�p αðxÞϕ̄�p αð0ÞjΩi
�

¼ vα iðpÞGijðp; tÞuα jðpÞ: ð5Þ

III. BARYON MATRIX ELEMENTS

A. General matrix elements

In this section, we establish the formalism to extend the
PEVA technique to the computation of baryon form factors.
To perform the extension,we consider three-point correlation
functions, inspecting theirDirac structure to extract the signal
of interest. We then take ratios with two point functions to
remove the time dependence and cancel out dependence on
the interpolator couplings. The calculations are performed in
the most general kinematics that can be realized.
Due to a lattice Ward identity associated with the

conserved current, the three-point correlation functions
for the electric form factor normalized to unit charge must
approach the two-point correlation functions exactly on
a configuration-by-configuration basis as Q2 → 0. As a
result, the two- and three-point correlation functions are
highly correlated at lowQ2. The ratios we take facilitate the
cancellation of statistical fluctuations, significantly reduc-
ing the statistical uncertainties in our extracted form factors.
By performing a parity-expanded variational analysis as

described in Sec. II, we construct optimized operators
ϕ�p αðxÞ that couple to each state α. We can use these
operators to calculate the three point correlation functions

G3
�ðJ ; p0; p; t2; t1; αÞ≡

X
x2;x2

e−ip
0·x2eiðp0−pÞ·x1

× hΩjϕ�p0 αðx2ÞJ ðx1Þϕ̄þp αð0ÞjΩi;
ð6Þ

where J ðxÞ is some current operator, which is inserted
with a momentum transfer q ¼ p0 − p. The consideration of
G3
−ðJ ; p0; p; t2; t1; αÞ (where the sink operator uses the

opposite PEVA projector sign convention to the source
operator) is required to optimize the extraction of the form
factors for general kinematics. We note that it is sufficient
to consider this change of projector for the sink operator
alone, leaving the source operator as ϕ̄þp αð0Þ in all cases
considered.
By inserting the complete set of states

I ¼
X
B;p;s

jB;p; sihB;p; sj ð7Þ

on either side of the current, and noting the use of
Euclidean time and fixed boundary conditions (or negligible

backward-running state contributions), we can rewrite this
three point correlation function as

G3
�ðJ ; p0; p; t2; t1; αÞ ¼

X
s0;s

e−EαðpÞt1e−Eαðp0Þðt2−t1Þ

× hΩjϕ�p0 αð0Þjα;p0; s0i
× hα;p0; s0jJ ð0Þjα;p; si
× hα;p; sjϕ̄p αð0ÞjΩi: ð8Þ

Note, the formalism presented here assumes perfect state
isolation such that each optimized operator couples only to a
single state.
We see that the time dependence of this three point

correlator is entirely contained within exponentials of the
energy, and the remaining structure depends on both the
overlap of the optimized operatorwith its corresponding state

hΩjϕ�p αð0Þjα;p; si ¼ zp α

ffiffiffiffiffiffiffiffiffiffiffiffi
mα

EαðpÞ
r

Γ�puαðp; sÞ; ð9Þ

and the matrix element for the current operator, hα;p0;
s0jJ ð0Þjα;p; si.
As we will see below, this Euclidean time dependence,

along with the scalar factors relating to the coupling
between the optimized operator and the state α can be
removed by taking appropriate ratios with the two point
correlation functions

Gðp; t; αÞ ¼ Tr

�X
s

e−EαðpÞthΩjϕ�p αð0Þjα;p; si

× hα;p; sjϕ̄�p αð0ÞjΩi
�
: ð10Þ

B. Vector current matrix elements

In this paper, we investigate the electromagnetic proper-
ties of the proton and neutron by choosing the current
operator J ðxÞ to be the vector current. In particular, we use
the tree-level OðaÞ-improved [5] conserved vector current
used in Ref. [6],

jμCIðxÞ≡ jμCðxÞ þ
r
2
aq̄ðxÞð∇⃖ρ þ ∇⃗ρÞσρμqðxÞ; ð11Þ

where r is the Wilson parameter, and

∇⃗μqðxÞ≡ 1

2
ðUμðxÞqðxþ eμÞ − U†μðx − eμÞqðx − eμÞÞ

ð12aÞ

q̄ðxÞ∇⃖μ ≡ 1

2
ðq̄ðxþ eμÞU†μðxÞ − q̄ðx − eμÞUμðx − eμÞÞ:

ð12bÞ
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This current is derived from the standard conserved
vector current for the Wilson action, symmetrized around a
lattice site

jμCðxÞ≡ 1

4
½q̄ðxÞðγμ − rÞUμðxÞqðxþ eμÞ

þ q̄ðxþ eμÞðγμ þ rÞU†μðxÞqðxÞ
þ q̄ðx − eμÞðγμ − rÞUμðx − eμÞqðxÞ
þ q̄ðxÞðγμ þ rÞU†μðx − eμÞqðx − eμÞ�: ð13Þ

As all terms in the improved conserved current are one-
link terms, the corrections to the tree-level couplings do not
encounter large nonperturbative mean-field improvement
corrections associated with tadpole contributions.
This choice of current operator gives the matrix element

hα;p0; s0jjμCIð0Þjα;p; si

¼
ffiffiffiffiffiffiffiffiffiffiffiffi
mα

EαðpÞ
r ffiffiffiffiffiffiffiffiffiffiffiffiffi

mα

Eαðp0Þ
r

ūαðp0; s0Þ

×

�
γμF1 αðQ2Þ − σμνqν

2mα
F2 αðQ2Þ

�
× uαðp; sÞ; ð14Þ

where Q2 ¼ q2 − ðEαðp0Þ − EαðpÞÞ2 is the squared four-
momentum with the conventional sign, and the invariant
scalar functions F1ðQ2Þ and F2ðQ2Þ are respectively the
Dirac and Pauli form factors.
Hence, using Eqs. (9) and (14) we can rewrite the

correlator as

G3
�ðjμCI; p0; p; t2; t1; αÞ
¼

X
s0;s

e−EαðpÞt1e−Eαðp0Þðt2−t1Þ mα

EαðpÞ
mα

Eαðp0Þ
zp0 αz̄p α

× Γ�p0uαðp0; s0Þūαðp0; s0Þ

×

�
γμF1 αðQ2Þ − σμνqν

2mα
F2 αðQ2Þ

�
× uαðp; sÞūαðp; sÞΓp: ð15Þ

Using the spin sum

X
s

uBðp; sÞūBðp; sÞ ¼
−iγ · pþmB

2mB
; ð16Þ

the three-point function is

G3
�ðjμCI; p0; p; t2; t1; αÞ
¼ e−EαðpÞt1e−Eαðp0Þðt2−t1Þzp0 αz̄p α

× Γ�p0
−iγ · p0 þmα

2Eαðp0Þ
�
γμF1 αðQ2Þ − σμνqν

2mα
F2 αðQ2Þ

�

×
−iγ · pþmα

2EαðpÞ
Γp: ð17Þ

To extract our desired signal from this spinor structure,
we can take the spinor trace with some spin-structure
projector ΓS. This trace is then called the spinor-projected
three-point correlation function

G3
�ðΓS; j

μ
CI; p

0; p; t2; t1; αÞ≡ TrðΓSG3
�ðjμCI; p0; p; t2; t1; αÞÞ

¼ e−EαðpÞt1e−Eαðp0Þðt2−t1Þzp0 αz̄p α

�
Tr

�
ΓSΓ�p0

−iγ · p0 þmα

2Eαðp0Þ
γμ

−iγ · pþmα

2EαðpÞ
Γp

�
F1 αðQ2Þ

− Tr

�
ΓSΓ�p0

−iγ · p0 þmα

2Eαðp0Þ
σμνqν

2mα

−iγ · pþmα

2EαðpÞ
Γp

�
F2 αðQ2Þ

�
: ð18Þ

If we consider the function

F0
�ðΓS;J Þ≡ 8EαðpÞEαðp0ÞTr

�
ΓSΓ�p0

−iγ · p0 þmα

2Eαðp0Þ
J

−iγ · pþmα

2EαðpÞ
Γp

�
; ð19Þ

where the prime on F0
�ðΓS;J Þ denotes the presence of the PEVA projectors, then we can express Eq. (18) as

G3
�ðΓS; j

μ
CI; p

0; p; t2; t1; αÞ ¼ e−EαðpÞt1e−Eαðp0Þðt2−t1Þzp αz̄p α
1

8EαðpÞEαðp0Þ

×

�
F0
�ðΓS; γμÞF1 αðQ2Þ − qν

2mα
F0
�ðΓS; σμνÞF2 αðQ2Þ

�
: ð20Þ

These spinor-projected correlation functions have a nontrivial time dependence, which can be removed by constructing
the ratio [7]
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R�ðp0; p; α; r; sÞ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi���� rμG3

�ðsνΓν; jμCI; p
0; p; t2; t1; αÞrρG3

�ðsσΓσ; jρCI; p; p
0; t2; t1; αÞ

Gðp0; t2; αÞGðp; t2; αÞ
����

s

× signðrλG3
�ðsηΓη; jλCI; p

0; p; t2; t1; αÞÞ; ð21Þ

where Γ4 ¼ ðI þ γ4Þ=2 and Γk ¼ ðI þ γ4Þðiγ5γkÞ=2 form
the basis for the spin projectors we use, and rμ and sμ are
coefficients selected to determine the form factors. Care is
taken in selecting rμ and sμ to ensure that the relevant
values of F0

�ðΓS;J Þ remain purely real.
In addition, as the momentum transfer q → 0, charge

conservation requires that the temporal component of the
three point correlator for the conserved vector current
becomes exactly proportional to the two point correlator
on each gauge field configuration, that is

G3
�ðsνΓν; j4CI; p; p; t2; t1; αÞ ∝ Gðp; t2; αÞ: ð22Þ

Because of this, taking the ratio in Eq. (21) facilitates the
cancellation of statistical fluctuations in the two- and three-
point correlators, providing results with small statistical
uncertainties, at least in the case of GEðQ2Þ.
We can then define the reduced ratio,

R̄�ðp0; p; α; r; sÞ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2EαðpÞ

EαðpÞ þmα

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Eαðp0Þ

Eαðp0Þ þmα

s

× R�ðp0; p; α; r; sÞ: ð23Þ

Taking this reduced ratio and substituting in the expressions
for the projected correlation functions, we obtain

R̄�ðp0;p;α;r;sÞ¼
rμsν

16EαðpÞEαðp0ÞðEαðpÞþmαÞðEαðp0ÞþmαÞ

×

�
F0
�ðΓν;γμÞF1αðQ2Þ

−
qρ

2mα
F0
�ðΓν;σμρÞF2αðQ2Þ

�
: ð24Þ

By investigating the rμ and sσ dependence of this ratio,
we find that the clearest signals are given by

RT
� ¼ 2

1� p̂ · p̂0
R̄�ðp0; p; α; ð1; 0Þ; ð1; 0ÞÞ; ð25aÞ

RS∓ ¼ 2

1� p̂ · p̂0
R̄∓ðp0; p; α; ð0; r̂Þ; ð0; ŝÞÞ; ð25bÞ

where ŝ is chosen such that p · ŝ ¼ 0 ¼ p0 · ŝ, r̂ is equal to
q̂ × ŝ, and the sign � in Eq. (25) is chosen such that 1�
p̂ · p̂0 is maximized. This choice maximizes the signal in the
lattice determination of the correlation function ratios.

We can then find the Sachs electric and magnetic form
factors,

GE αðQ2Þ≡ F1 αðQ2Þ − Q2

ð2mαÞ2
F2 αðQ2Þ; ð26aÞ

GM αðQ2Þ≡ F1 αðQ2Þ þ F2 αðQ2Þ; ð26bÞ

through appropriate linear combinations of RT
� and RS∓. A

similar procedure can be applied to extract the relevant
form factors from any current.
We have shownhow the PEVA technique can be applied to

the calculation of baryon form factors for arbitrary kinemat-
ics. Doing so ensures that these form factors are free from
opposite parity contaminations, up to residual contamina-
tions arising from the use of a finite operator basis.

IV. SACHS ELECTRIC FORM FACTOR

We now apply this technique to calculate the Sachs
electric form factors of the proton and the neutron. This
gives us insight into the distribution of charge within these
states.
The results in this paper are calculated on the PACS-CS

(2þ 1)-flavor full-QCD ensembles [8], made available
through the ILDG [9]. These ensembles use a 323 × 64
lattice, and employ a renormalization-group improved
Iwasaki gauge action with β ¼ 1.90 and nonperturbatively
OðaÞ-improved Wilson quarks, with CSW ¼ 1.715. We use
five ensembles, with stated pion masses from mπ ¼
702 MeV to 156 MeV [8], and set the scale using the
Sommer parameter with r0 ¼ 0.4921ð64Þ fm [8]. More
details of the individual ensembles are presented in Table I,
including the squared pion masses in the Sommer scale.

TABLE I. Details of the gauge field ensembles used in this
analysis. For each ensemble we list both the pion mass given in
Ref. [8], with the lattice spacing set by hadronic inputs, and our
determination of the squared pion mass with the lattice spacing
listed in the table, which is set by the Sommer parameter with
r0 ¼ 0.4921ð64Þ fm [8].

PACS-CS
mπ=MeV a=fm m2

π=GeV # conf.
# src

per conf.

702 0.1022(15) 0.3884(113) 399 1
570 0.1009(15) 0.2654(81) 397 1
411 0.0961(13) 0.1525(43) 449 2
296 0.0951(13) 0.0784(25) 400 2
156 0.0933(13) 0.0285(12) 197 4
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In these finite volumes, the momentum is quantized in units
of jqminj≡ 2π

32a. When fitting correlators, the χ2=dof is
calculated with the full covariance matrix, and the χ2 values
of all fits are consistent with an appropriate χ2 distribution,
as determined by a one-sided Kolmogorov-Smirnov test
comparing the full set of all χ2 values for each number of
degrees of freedom to the corresponding χ2 distribution.
The relativistic components of the baryon spinor are

suppressed by the inverse of the baryon mass. Across the
pion masses considered here, the nucleon mass ranges from
1.418(9) GeV to 0.993(15) GeV. As such, at the lighter pion
masses, the relativistic components of the baryon spinor
will be enhanced by a factor of ∼1.5. As a result, the parity-
mixing at finite momentum will be increasingly problem-
atic. However, at lighter pion masses, the gauge noise is
more significant, and can occlude the parity-mixing effects
if the statistics are insufficient.
For the variational analyses in this paper, we begin with

an eight-interpolator basis is formed from the conventional
spin-1=2 nucleon interpolators

χ1 ¼ ϵabc½ua⊤ðCγ5Þdb�uc; and

χ2 ¼ ϵabc½ua⊤ðCÞdb�γ5uc; ð27Þ

with 16, 35, 100, or 200 sweeps [10] of gauge-invariant
Gaussian smearing [11] with a smearing fraction of α ¼ 0.7,
applied at the quark source and sinks in creating the
propagators. For the PEVA analyses, this basis is expanded
to sixteen operators as described in Sec. II. Before perform-
ing the Gaussian smearing, the gauge links to be used are
smoothed by applying four sweeps of three-dimensional
isotropic stout-link smearing [12] with ρ ¼ 0.1.
To extract the form factors, we fix the source at time slice

Nt=4 ¼ 16. As we use fixed boundary conditions in the time
direction, this ensures that the source is sufficiently separated
from the boundary to minimize boundary effects. Utilizing
the sequential source technique [13], we invert through the
current, fixing the current insertion at time slice 21. We
choose time slice 21 by inspecting the projected two-point
correlation functions associated with each state and observ-
ing that excited-state contaminations are suppressed by time
slice 21. This is evaluated by fitting the effective mass in this
region to a single state ansatz verifying that the full
covariance χ2=dof is satisfactory. Choosing the current
insertion time in this way allows us to use knowledge of
the time slice where the nucleon dominates the two point
function to insert the current with the expectation that
excited-state systematic errors are contained within the
statistical uncertainties. As the correlation matrix is formed
in the PEVA approach, opposite-parity contaminations are
suppressed at both the source and the sink.
While this technique is a useful guide to choosing a

current insertion time, it does not guarantee the elimination
of excited state effects. Indeed, as our results will show,

excited-state effects can be much worse in three-point
functions than two-point functions.
In choosing the variational parameters t0 and Δt (as

defined in Ref. [1]), we have implemented the criteria
described in Ref. [14] and compared it with other choices
of the variational parameters. In the baryon sector one is
always facing challenges with the rapid onset of statistical
uncertainties. Moreover, as explored in Ref. [10], the con-
dition number of the correlation matrices deteriorates as one
progresses inEuclidean time. Through a careful investigation
we found that commencing the variational analysis one slice
after the source provides significantly smaller uncertainties
in the projected correlators while still providing excellent
plateau behavior in the effective mass or energy provided the
second time is two or three time slices later. Thus for this
work we chose t0 ¼ 17 and Δt ¼ 2.
We then extract the form factors as outlined in Sec. III for

every possible sink time and once again look for a plateau
consistent with a single-state ansatz.
Performing the sequential source technique through the

current requires us to choose our current operators and
momentum transfers at inversion time. However, this
allows us to vary the sink momentum, and by extension
the source momentum, as well as varying the form of the
interpolation functions at the sink. This gives us access to
several states, as well as a range of values of

Q2 ¼ q2 − ðEαðp0Þ − EαðpÞÞ2: ð28Þ

In particular, values of Q2 well below that encountered in
the frames with p, or p0 ¼ ð0; 0; 0Þ are accessed via
kinematics such as p ¼ jqminjð1; 0; 0Þ, p0 ¼ jqminjð2; 0; 0Þ.
The main alternative approach to accessing Q2 values in
this region is to use twisted boundary conditions to change
the momentum discretization, allowing the valence quarks
to take different momentum values from the sea quarks. In
our approach, all momenta attained by the valence quarks
are present in the sea, and thus we avoid the complexities of
partial quenching effects inherent in the twisted boundary
approach. Table II summarizes the kinematics considered
herein.
To begin, we inspect the Euclidean time dependence of

GEðQ2Þ, extracted as outlined in Sec. III. We consider
independently the connected contributions to GEðQ2Þ from
single valence quarks of unit charge. The two flavors
considered are the doubly represented quark flavor, or the
up quark in the proton (up); and the singly represented
quark flavor, or the down quark in the proton (dp).
In the case of perfect optimized operators, there should

be no Euclidean time dependence, and the extracted form
factors should be perfectly constant (up to statistical
fluctuations) after the current insertion. However, in prac-
tice a finite operator basis is insufficient to perfectly isolate
each state, leading to residual excited-state contaminations.
These show up as enhanced or suppressed form factors at
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early Euclidean times. In light of this, care must be taken to
select a Euclidean time region in which these excited-state
contaminations are suppressed and the single state ansatz is
satisfied. To ensure this ansatz is satisfied, we inspect the
full covariance χ2=dof of a constant fit in the proposed
plateau region, and require that it lies in an acceptable range
≲1.2. At the same time, we ensure that we do not fit
excessively noisy points in the tail of the correlator, as they
can serve to suppress the χ2=dof and hide the effects of
excited state contamination. In doing so, we sometimes find
that the χ2=dof for a given plateau region differs signifi-
cantly between the two analyses, and this can lead to
selected plateaus that start on different time slices.
In Figs. 1 and 2 we plot both PEVA and conventional

extractions of GEðQ2Þ with respect to Euclidean sink
time at the lightest pion mass of mπ ¼ 156 MeV and the
lowest-momentum kinematics of p ¼ ð0; 0; 0Þ and p0 ¼
jqminjð1; 0; 0Þ. We see that starting from time slice 22, which
is immediately after the source, both extractions of GEðQ2Þ
are quite flat across all time slices considered. However, the
errors on GEðQ2Þ are sufficiently small to identify a small
Euclidean time dependence at early time slices. We find that
this dependence is suppressed by time slice 24 and are able to
find a clear and clean plateau from 24–27 for both extrac-
tions. For both quark flavors considered, there is no signifi-
cant difference in the fit ranges, extracted values or errors
between the two extractions.
The conventional thought is that the opposite-parity

contaminations are small. Because they are from heavier
states, these contaminations are suppressed by Euclidean
time evolution. We will see that this is not the case for the
magnetic form factor, where we will present direct evidence
for important opposite parity contamination. For the

electric form factor, agreement between the PEVA and
conventional analyses can be maintained provided the
opposite-parity contaminations contribute to the form
factor in a manner similar to that of the parity sector under
examination. As a result, despite their continued presence,
the opposite-parity contaminations do not significantly
perturb the value of the electric form factor.

TABLE II. Different kinematics used in our analysis to access a
range of Q2 values. The Q2 value listed is for the ground-state
nucleon at the lightest pion mass of mπ ¼ 156 MeV. The
statistical error listed for Q2 comes from both the determination
of the mass of the state and the conversion to physical units.

Source
momentum
p=jqminj

Sink
momentum
p0=jqminj

Momentum
transfer
q=jqminj Q2=GeV2

(2,0,0) (3,0,0) (1,0,0) 0.0833(27)
(2,0,1) (3,0,1) (1,0,0) 0.0902(28)
(1,0,0) (2,0,0) (1,0,0) 0.1248(37)
(1,0,1) (2,0,1) (1,0,0) 0.1301(38)
(0,0,0) (1,0,0) (1,0,0) 0.1655(48)
(0,0,1) (1,0,1) (1,0,0) 0.1665(48)
(2,0,0) (3,1,0) (1,1,0) 0.2211(66)
(1,0,0) (2,1,0) (1,1,0) 0.2647(78)
(0,0,0) (1,1,0) (1,1,0) 0.3191(92)
ð0;−1; 0Þ (1,0,0) (1,1,0) 0.3449(100)
(1,0,0) (3,0,0) (2,0,0) 0.4228(131)
(0,0,0) (2,0,0) (2,0,0) 0.5989(174)
ð−1; 0; 0Þ (1,0,0) (2,0,0) 0.6898(199)

FIG. 1. The contribution of the doubly represented quark flavor
to the electric form factor of the ground-state nucleon at
mπ ¼ 156 MeV, for the lowest-momentum kinematics, provid-
ing Q2 ¼ 0.1655ð48Þ GeV2. Our fits to the plateaus are illus-
trated by shaded bands. We plot the conventional analysis with
open markers and dashed fit lines and the new PEVA analysis
with filled markers and solid fit lines. The source is at time slice
16, and the current is inserted at time slice 21. Both the
conventional and PEVA fits are from time slice 24–27.

FIG. 2. The contribution of the singly represented quark flavor
to the electric form factor of the ground-state nucleon. The
conventions used in this plot are the same as used in Fig. 1. The
kinematics are also the same, with mπ ¼ 156 MeV, and
Q2 ¼ 0.1655ð48Þ GeV2. Both the conventional and PEVA fits
are from time slice 24–27.
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At the heavier pion masses, the statistical noise in the
form factor extractions decreases, and the plateau region
shifts somewhat. However for all five masses, the quali-
tative behavior described above remains true, save for the
following anomalies. Atmπ ¼ 570 MeV, the plateaus from
PEVA start two time slices earlier than those from the
conventional analysis. For example, Fig. 3 shows the
plateaus for the doubly represented quark flavor. This is
potentially a signal of opposite-parity contaminations
entering into the analysis. However, there is no statistically
significant difference in the fit values from the two methods
and the different plateaus do not show up at any of the other
masses considered, so it is inconclusive.
We can also consider changing the momenta of the initial

and final states, both by changing the momentum transfer,
and by boosting both the initial and final states without
changing the three-momentum transfer.
If we do this for themπ ¼ 156 MeV ensemble, where we

previously found consistent plateaus between PEVA and a
conventional analysis, we find some discrepancies. In
Figs. 4 and 5, we boost the initial state momentum to p ¼
jqminjð−1; 0; 0Þ and increase the momentum transfer to
q ¼ jqminjð2; 0; 0Þ, leading to a significant increase in Q2.
In this case, we find that the PEVA plateaus start one time
slice earlier than the conventional plateaus. They have
consistent plateau values, but due to the earlier onset of the
PEVA plateaus the statistical error is reduced. These results
suggest that there are contaminations in the extraction of
GEðQ2Þ with the conventional analysis at this mass.
However the differences are not consistent across all
higher-momentum kinematics, and are not enough to

categorically ascribe these problems to opposite-parity
contamination. We do note that when there is a difference
in the onset of the plateaus, the PEVA plateau always starts
earlier.
For the other four masses, almost all kinematics have

identical plateaus in GEðQ2Þ from both analyses, save for
mπ ¼ 570 MeV, which once again has consistently earlier
plateaus for PEVA than the conventional analysis. It is
unclear why mπ ¼ 570 MeV has inconsistent plateaus at a
range of kinematics when the other three heavy masses do
not. However, it is clear that whatever opposite-parity
contaminations are occurring, they are not affecting the
GEðQ2Þ values extracted, at least within our current
statistical uncertainties.

FIG. 3. The contribution of the doubly represented quark flavor
to the electric form factor of the ground-state nucleon at
mπ ¼ 570 MeV, for the lowest-momentum kinematics, provid-
ing Q2 ¼ 0.1444ð44Þ GeV2. The conventions used in this plot
are the same as used in Fig. 1. The PEVA fits start at time slice 26,
whereas the conventional fits start at time slice 28. Note that this
plot has been scaled up significantly to make the difference
between the two fits visible.

FIG. 4. Contributions of up to the ground stateGEðQ2Þ atmπ ¼
156 MeV for p ¼ jqminjð−1; 0; 0Þ and p0 ¼ jqminjð1; 0; 0Þ, pro-
viding Q2 ¼ 0.690ð20Þ GeV2. The conventions used in this plot
are the same as in Fig. 1. The PEVA fit starts from time slice 23,
but the conventional analysis starts from time slice 24.

FIG. 5. Contributions of dp to the ground state GEðQ2Þ. Pion
mass and kinematics are as in Fig. 4 above. The conventions used
in this plot are the same as in Fig. 1. The PEVA fit starts from time
slice 23, but the conventional analysis starts from time slice 24.
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Across all five masses, we consistently find that at higher
momenta there is more statistical noise in the extraction
of GEðQ2Þ.
In Fig. 6, we take the plateau values from each of the

kinematics listed in Table II at mπ ¼ 156 MeV and plot
theirQ2 dependence. We exclude any kinematics for which
we are unable to find a clear plateau, or the variational
analysis produces a negative generalized eigenvalue (as
negative eigenvalues indicate issues with the variational
analysis, and can cause problems with state identification).
We see the contributions from both quark flavors are very
similar and each agrees well with a dipole ansatz

GDðQ2Þ ¼ G0

ð1þQ2=Λ2Þ2 ; ð29Þ

with G0 fixed to one, as we are working with single quarks
of unit charge. These fits correspond to an RMS charge
radius of hr2i1=2 ¼ ffiffiffiffiffi

12
p

=Λ ¼ 0.684ð19Þ fm for the doubly
represented quark flavor and 0.659(21) fm for the singly
represented quark flavor. That these values are smaller than
the physical expressions can be ascribed to the finite
volume of the lattice [15]. For brevity, we omit similar
plots for the other four masses.
In order to compute the form factors of the proton,

GEpðQ2Þ, and neutron, GEnðQ2Þ, we need to take the
correct linear combinations of the contributions from the
doubly and singly represented quark flavors to reintroduce

the multiplicity of the doubly represented quark and the
physical charges of the up and down quarks.
In Fig. 7 and Table III, we present the electric form

factors obtained by these combinations for the lightest pion
mass considered here.
In this work, we only consider connected contributions

to the nucleon form factors. There is no a priori reason that
the disconnected loops could not be included in a PEVA
calculation. They were simply omitted from the analysis
presented here for computational efficiency. The discon-
nected loop contributions to the proton and neutron
should be approximately the same (exactly the same in
our lattice calculations, as we are in the isospin symmetric
limit). Hence, if we take the isovector combination
GEpðQ2Þ −GEnðQ2Þ, the disconnected loop contributions
will cancel. The form factor values for this combination are
also presented in Table III.
The form factor for the neutrally charged neutron is close

to zero for all masses considered, as expected. Similar to
the linear combinations taken for the form factors, we can

FIG. 6. Contributions from individual quark flavors to the
electric form factor of the ground-state nucleon at
mπ ¼ 156 MeV. The shaded regions are dipole fits to the form
factor, with lines indicating the central values. The y-axis
intercept is fixed to one, as we are using an improved conserved
vector current and the quarks are taken with unit charge. The
errors on these fits are small enough that the shaded bands
are barely distinguishable from the central lines. The fits
correspond to a charge radius of 0.684(19) fm for the doubly
represented quark (up) and 0.659(21) fm for the singly
represented quark (dp).

TABLE III. GEðQ2Þ at mπ ¼ 156 MeV for all acceptable
kinematics. We present results for the ground-state proton and
neutron, as well as isovector combination GEpðQ2Þ − GEnðQ2Þ
(which is insensitive to disconnected loop corrections).

Q2=GeV2 GEpðQ2Þ GEnðQ2Þ GEpðQ2Þ − GEnðQ2Þ
0.1248(37) 0.719(34) 0.043(28) 0.677(51)
0.1655(48) 0.724(18) 0.006(10) 0.718(23)
0.1665(48) 0.705(25) 0.014(15) 0.691(38)
0.2647(78) 0.640(34) 0.014(20) 0.626(44)
0.3191(92) 0.578(17) 0.007(9) 0.571(18)
0.3449(100) 0.543(24) 0.023(23) 0.520(38)
0.5989(174) 0.357(29) 0.050(20) 0.307(35)
0.6898(199) 0.360(17) 0.011(11) 0.350(25)

FIG. 7. GEðQ2Þ for the ground-state proton and neutron at
mπ ¼ 156 MeV. The shaded region corresponds to a dipole fit to
the proton form factor, with a charge radius of 0.691(19) fm.
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combine the squared charge radii from the individual quark
sectors with the appropriate multiplicities and charge
factors to obtain the squared charge radius of the neutron.
For all five pion masses, we find a small negative value. For
example, at mπ ¼ 156 MeV, the neutron’s squared charge
radius is −0.022ð9Þ fm. This is qualitatively consistent
with the negative squared charge radii observed in experi-
ment. A more quantitative discussion of this effect requires
knowledge of the disconnected loop contributions, which
are not considered in this work.
The form factor of the proton matches well with a dipole

fit with G0 fixed to one (the charge of the proton). As
expected, the charge radii extracted from these dipole fits
approach the experimentally measured proton charge
radius from below as the pion mass is reduced towards
the physical point.
As discussed in Refs. [16,17], the exact physical value of

the proton radius has been a puzzle for the last seven years,
since precision laser spectroscopy of muonic hydrogen
yielded a proton radius of 0.840 87(39) fm [18] in 2010.
This value is 4.6%, or 5.6σ lower than the CODATA 2014
world average of 0.8751(61) fm [19], from a combination
of laser spectroscopy of electronic hydrogen and deu-
terium, and elastic electron scattering. Recent precision
results from new laser spectroscopy of electronic hydrogen
provide a proton radius of 0.8335(95) fm [20], which
agrees with the muonic hydrogen radius. This suggests that
the discrepancy is likely due to systematic errors in the
existing results for electronic hydrogen and elastic electron
scattering.
Returning to our results, in Fig. 8, we plot the charge

radii obtained from dipole fits to the isovector combination
as a function of the squared pion mass. We see that the
pion-mass dependence is quite smooth, suggesting that the
structure of the state is fairly consistent at all five masses

considered here. It has a clear trend of increasing charge
radius as the mass is reduced. This effect is in accord with
the expectations of finite-volume chiral perturbation
theory [15].
For all pion masses and kinematics considered in this

paper, in the specific case of the electric form factor, there is
no conclusive evidence of opposite parity contaminations.
Both the PEVA and conventional variational analysis show
clear and clean plateaus in GEðQ2Þ with good excited state
control. This supports previous work demonstrating the
utility of variational analysis techniques in calculating
baryon matrix elements [21,22]. By using such techniques
we are able to cleanly isolate precise values for the Sachs
electric form factor of the ground-state proton and neutron.

V. SACHS MAGNETIC FORM FACTOR

Moving on to GMðQ2Þ, we once again begin with the
lightest pion mass and the lowest momenta. Here, we
present results in terms of nuclear magnetons, μN ≡ eℏ

2mPhys
p

,

defined in terms of the physical proton mass, mPhys
p . In

Fig. 9, we see that while the signal is noisier than GEðQ2Þ,
the excited-state contaminations present at early Euclidean
times are less significant, and for both the PEVA and
conventional analyses we are able to find a plateau from
time slice 23 to 25. We are cautious in fitting noisy data and
restrict fit regimes to avoid large fluctuations. Figure 10

FIG. 8. Quark-mass dependence of charge radii from dipole fits
to the isovector combination GEpðQ2Þ − GEnðQ2Þ. We see a
clear trend to larger radii as the pion mass approaches the physical
point, represented by the dashed vertical line.

FIG. 9. The contributions to the magnetic form factor from
single quarks of unit charge for the ground-state nucleon at mπ ¼
156 MeV for the lowest-momentum kinematics, providing
Q2 ¼ 0.1655ð48Þ GeV2. We plot the conventional analysis with
open markers and the new PEVA analysis with filled markers.
Our fits to the plateaus are illustrated by shaded bands, with the
central value indicated by dashed lines for the conventional
analysis, and solid lines for the PEVA analysis. The plateau
regions for both analyses are consistent, starting from time slice
23 for all four fits, but the value of the conventional plateau for
the singly represented quark (dp) has a magnitude approximately
35% lower than the PEVA plateau.
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illustrates a similar plot for mπ ¼ 570 MeV. Here the
extended plateau is from time slice 23 to 27 and is more
representative of the three heaviest pion masses considered.
Contrary to the electric case, there is a statistically

significant difference in the values of the plateaus from
the PEVA and conventional analysis for the singly repre-
sented quark flavor. If we take the correlated ratio of
GMðQ2Þ from the conventional analysis to GMðQ2Þ from
the PEVA analysis, we get a value of 0.66(9). This ratio is
clearly less than 1, indicating that the magnitude of the
form factor is being significantly underestimated in the
conventional analysis. This suggests that despite finding a
plateau, the conventional analysis is being affected by
opposite-parity contaminations that are introducing a sys-
tematic error of approximately 35%.
This is the strongest effect we see across all kinematics

considered. However, the conventional plateaus for other
kinematics still show a statistically significant deviation
from the PEVA plateaus despite having the same fit regions
and acceptable χ2 values. In Fig. 11, we plot the correlated
ratio discussed above for the kinematics that give the least
noisy extractions of GMðQ2Þ with acceptable plateaus and
positive generalized eigenvalues. We see that for the doubly
represented quark sector, while some kinematics are con-
sistent with unity, others sit more than one standard
deviation low. The full covariance χ2=dof for an ansatz
of unity across all kinematics for which there are acceptable
plateaus (including ratios not on this graph) is 5.0. This
indicates a significant disagreement between the two
analyses, suggesting that the conventional variational
analysis is likely contaminated by opposite-parity states.
While it is not clear that the effect will be the same across

all kinematics, we can take a correlated weighted average
across all of the kinematics with valid plateaus to obtain an
estimate for the size of the effect. Doing so, we obtain a
value of 0.92(2), indicating that this quark flavor sees errors
of 5%–10%. Removing the noisiest points as in Fig. 11
does not significantly alter these results, giving a χ2=dof of
5.4 and a weighted average of 0.91(2).
The singly represented quark flavor (dp) potentially

shows an even larger effect, with a weighted average of
0.83(5). The χ2=dof is lower due to larger statistical errors,
taking avalue of 2.9.However, it is still quite large, indicating
the difference between the two analyses is significant. While
removing the noisiest points as in Fig. 11 does increase the
χ2=dof to 6.4, it does not significantly change the weighted
average, giving 0.78(5). These results indicate the presence
of opposite-parity contaminations, which introduce system-
atic errors of 10%–20% for dp, and perhaps more for some
specific kinematics.
As the states become less relativistic at larger quark

masses, we see a reduction in the amount of parity mixing
that occurs, and consequentially in the size of the system-
atic errors, particularly at the heaviest two masses.
However, we still observe statistically significant devia-
tions of the ratio below unity. For the heaviest two masses
of 570 MeV and 702 MeV, we see a systematic under-
estimation of the singly represented quark contributions by
5%–10% and at the remaining masses of 411 MeV and
296 MeV, we see a 10%–15% underestimation.
These results provide strong evidence for opposite-parity

contaminations in conventional extractions. These contam-
inations have a clear effect on the extracted magnetic form

FIG. 10. The contributions to the magnetic form factor from
single quarks of unit charge for the ground-state nucleon at mπ ¼
570 MeV for the lowest-momentum kinematics, providing
Q2 ¼ 0.1444ð44Þ GeV2. The plateau regions for both analyses
are consistent, starting from time slice 23 for all four fits, but the
value of the conventional plateau for the singly represented quark
(dp) has a magnitude slightly lower than the PEVA plateau.

FIG. 11. Ratios of conventional plateaus to PEVA plateaus for
ground state GMðQ2Þ at mπ ¼ 156 MeV. For clarity, ratios with
large statistical errors have been excluded from the plot. If the
plateaus were consistent, the points should be distributed about
1.0. For the doubly represented quark flavor (up), some kin-
ematics match this expectation, but others sit more than one
standard deviation low. The singly represented quark flavor (dp)
appears to show an even larger effect, with the ratios shifting even
further away from unity albeit with larger statistical errors.
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factor at all five pion masses, on the order of 10% for the
doubly represented quark sector (up) and 20% for the
singly represented quark sector (dp) at the lighter masses.
Moving forward, use of the PEVA technique will be critical
in precision calculations of GMðQ2Þ for the ground-state
nucleon, for which such systematic errors are unacceptable.
We now proceed to examine the extracted form factors.

In light of the opposite-parity contaminations present in the
conventional extractions, we focus only on the PEVA
results. Figure 12 shows the Q2 dependence of the
contribution to GMðQ2Þ from each quark flavor at
mπ ¼ 156 MeV. We see good agreement with a dipole
ansatz, with magnetic radii of 0.514(30) fm for the doubly
represented quark flavor and 0.85(11) fm for the singly
represented quark flavor.
Similar to the electric form factor case described in

Sec. IV, we take linear combinations of the contributions
from the doubly and singly represented quark flavors to
obtain the magnetic form factors of the proton (GMpðQ2Þ)
and neutron GMnðQ2Þ. In addition, we can take the
isovector combination (GMpðQ2Þ − GMnðQ2Þ) to cancel
out disconnected loop contributions.
We plot these combinations for the lightest pion mass in

Fig. 13, and present the values in Table IV. At all five
masses, the magnetic form factors of both the proton and
the neutron agree well with a dipole fit. The magnetic
radius obtained from each of these fits is close to the
electric charge radius of the proton extracted from GEðQ2Þ
at the same pion mass.
In Fig. 14, we plot the quark-mass dependence of charge

radii obtained from the dipole fits to the isovector combi-
nation GMpðQ2Þ − GMnðQ2Þ. We can once again see a
quark-mass dependence, with increasing charge radius at
lighter pion masses, aside from the lightest mass, where the
fit is getting too noisy to clearly distinguish a trend. At the
same time, GMð0Þ is increasing. This is in agreement with
expectations from chiral perturbation theory [23,24].
GMð0Þ corresponds to the magnetic moment, which will
be studied in more detail in the next section.
In this section, we demonstrated the importance of the

PEVA technique in controlling systematic errors arising
from opposite-parity contaminations in extractions of the

FIG. 12. Quark-flavor contributions to ground state GMðQ2Þ at
mπ ¼ 156 MeV. The shaded regions are dipole fits to the form
factor, corresponding to magnetic radii of 0.514(30) fm for the
doubly represented quark flavor (up) and 0.85(11) fm for the
singly represented quark flavor (dp).

FIG. 13. GMðQ2Þ for the ground-state proton and neutron at
mπ ¼ 156 MeV. The shaded region corresponds to a dipole fit to
the form factor, with a magnetic radius of 0.551(29) fm for the
proton and 0.618(31) fm for the neutron. We also include the
isovector combination (GMpðQ2Þ − GMnðQ2Þ), which is insen-
sitive to disconnected loop corrections.

TABLE IV. GMðQ2Þ at mπ ¼ 156 MeV for all acceptable kinematics. We present results for the ground-state proton and neutron, as
well as isovector combination GMpðQ2Þ − GMnðQ2Þ (which should be free from disconnected loop corrections).

Q2=GeV2 GMpðQ2Þ=μN GMnðQ2Þ=μN ðGMpðQ2Þ − GMnðQ2ÞÞ=μN
0.1248(37) 1.94(14) −1.29ð9Þ 3.23(21)
0.1655(48) 1.69(6) −1.12ð5Þ 2.81(10)
0.2647(78) 1.70(15) −1.03ð8Þ 2.73(22)
0.3191(92) 1.52(5) −0.94ð3Þ 2.47(7)
0.3449(100) 1.39(8) −0.84ð6Þ 2.23(12)
0.5989(174) 1.04(5) −0.65ð4Þ 1.69(8)
0.6898(199) 1.05(3) −0.61ð3Þ 1.66(6)
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magnetic form factor for the ground-state nucleon. Due to
these opposite-parity contaminations, the conventional
analysis underestimates the contribution to the magnetic
form factor from the singly represented quark sector by
∼20% at light pion masses, whereas the PEVA technique
removes the contaminations and gives improved results.

VI. MAGNETIC DIPOLE MOMENT

Returning to the individual quark flavor contributions,
and noting that the observedQ2 dependence ofGEðQ2Þ and
GMðQ2Þ is very similar, we hypothesize that GMðQ2Þ and
GEðQ2Þ have the same scaling in Q2 over the range
considered here. If this hypothesis is valid, then the ratio
of GMðQ2Þ to GEðQ2Þ should be independent of Q2. Since
we are working with an improved conserved vector current,
and single quarks of unit charge, GEð0Þ ¼ 1 exactly, and
GMð0Þ is the contribution of the quark flavor to the
magnetic moment (up to scaling by the physical charge).
Hence, the ratio

μEffðQ2Þ≡GMðQ2Þ
GEðQ2Þ ; ð30Þ

is expected to be constant in Q2, and equal to the
contribution to the magnetic moment from the given quark
flavor.
Experimental results show that at high Q2,

μGEðQ2Þ=GMðQ2Þ diverges significantly from unity
[25], so our hypothesis must break down at sufficiently
highQ2. However, over the lowQ2 range we consider here,
these experimental results show that μGEðQ2Þ=GMðQ2Þ is
close to one, and hence within this range GMðQ2Þ=GEðQ2Þ
approximates the magnetic moment.

For all five pion masses, we find that μEffðQ2Þ is indeed
approximately constant across theQ2 range considered. For
example, Fig. 15 shows the Q2 dependence of μEffðQ2Þ at
the lightest pion mass. The remaining masses show very
similar Q2 dependence. By taking a constant fit across all
kinematics we obtain a estimate for the contributions to the
magnetic moment of the nucleon from single quarks of unit
charge. In the graphs shown here, the statistical errors on
this fit are small, and the shaded band showing these errors
is almost indistinguishable from the solid line indicating the
central value of the fit. Figure 16 shows the pion mass
dependence of these fits. These individual quark-flavor

FIG. 14. Quark-mass dependence of charge radii obtained
from dipole fits to the isovector magnetic moment
(GMpðQ2Þ −GMnðQ2Þ). As in Fig. 8, the dashed line corre-
sponds to the physical pion mass.

FIG. 15. μEffðQ2Þ for individual quark flavors in the ground
state nucleon at mπ ¼ 156 MeV. The narrow shaded bands are
constant fits to the effective magnetic moment. They correspond
to magnetic moment contributions of 1.734(56) μN for the doubly
represented quark and −0.616ð44Þ μN for the singly represented
quark.

FIG. 16. Pion-mass dependence of contributions to the ground-
state magnetic moment from the doubly represented quark sector
(up) and the singly represented quark sector (dp). The vertical
dashed line shows the physical pion mass.
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contributions show a smooth pion-mass dependence with
an enhancement of the magnetic moments at low pion mass
consistent with chiral perturbation theory [23,24,26].
We can take the linear combinations discussed in Sec. IV

to obtain the magnetic moments of the ground-state proton
and neutron. The quark mass dependence of these combi-
nations is illustrated in Fig. 17, as well as in Table V.

We also present the equivalent magnetic moment extrac-
tions from the conventional analysis. At the heavier pion
masses, the conventional analysis slightly underestimates
the magnetic moment values. At the lighter pion masses,
this discrepancy grows rapidly, reaching approximately
10% at the lightest pion mass considered here.
It is of interest to understand the origin of the difference

between the PEVA and conventional analyses at the lightest
pion mass considered here. Inspecting the excited state
spectrum and the structure of the optimized operators at
the lightest two masses shows some difference, but no
clear indication of why the opposite-parity contaminations
would be so much stronger at the lightest mass. However, a
detailed investigation of the negative parity spectrum gives
a hint at a possible cause. At the heavier pion masses, the
localized negative parity excitations have magnetic
moments similar to quark model expectations for the
N�ð1535Þ and N�ð1650Þ resonances, as presented in
Ref. [27]. However, at the lighter pion masses, the magnetic
moments shift away from the quark model expectations,
suggesting an increasing role for multiparticle states in the
negative-parity spectrum. This leads to a change in the
nature of the localized negative-parity states that couple
well to the localized operators used in this work, which in
turn can significantly alter the effects of opposite-parity
contaminations on the ground state matrix elements.
The magnetic moments of the proton and neutron

extracted by PEVA have a similar quark mass dependence
to the individual quark-flavor contributions and are close to
the experimental values of 2.7928473508(85) μN for the
proton, and−1.913 042 73ð45Þ μN for the neutron [19]. The
small discrepancy between our results and the physical
values is due to a combination of disconnected loop
contributions which are not included in our calculation,
and finite-volume effects. To avoid the disconnected loop
corrections, we compare the isovector combination μp − μn
to the equivalent combination of the experimentally deter-
mined magnetic moments. Doing this, we find that we
underestimate the experimental value by around 10%. This
remaining discrepancy can be attributed to finite volume
corrections.
To address these finite volume corrections, we consider

the chiral effective field theory study presented in Ref. [26].
Using this formalism, we estimate the finite volume
corrections to our magnetic moment extractions at each
pion mass. Our results corrected to their predicted infinite-
volume values are presented in Fig. 18. We see that this
correction brings our PEVA results much closer to the
experimental value for the isovector magnetic moment.
Performing the full chiral extrapolation as in Ref. [26], we
find that the PEVA results are consistent with the exper-
imental result, while the conventional results sit many
standard deviations low. In this analysis, there is some
instability in the extracted regulator parameter, due to the
smaller number of ensembles considered here. To account

FIG. 17. Pion-mass dependence of the extracted magnetic
moment for the ground-state proton and neutron. To cancel
out any disconnected loop contributions, we plot the isovector
combination μp − μn. As the physical point is approached, the
trend in this combination approaches but does not quite reach the
physical value of 4.70μN [19], represented by a black star.

TABLE V. Magnetic moments at mπ ¼ 156 MeV for all five
pion masses. We present results for the ground-state proton
and neutron, for both the PEVA analysis and the conventional
parity projected analysis. We see that the conventional analysis
consistently underestimates the magnetic moments, with the
largest effect at smaller pion masses, where it reaches approx-
imately 10%.

m2
π=GeV2

μp=μN
(PEVA)

μp=μN
(Conv.)

μn=μN
(PEVA)

μn=μN
(Conv.)

0.3884(113) 1.89(2) 1.86(2) −1.19ð1Þ −1.17ð1Þ
0.2654(81) 2.10(3) 2.05(3) −1.32ð2Þ −1.28ð2Þ
0.1525(43) 2.24(3) 2.17(3) −1.39ð2Þ −1.34ð2Þ
0.0784(25) 2.31(2) 2.25(2) −1.41ð2Þ −1.39ð2Þ
0.0285(12) 2.52(6) 2.28(6) −1.58ð4Þ −1.39ð3Þ
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for this, we have included in our analysis an additional
systematic error not considered in the reference, arising
from varying m2

π;max from 0.39(1) GeV to 0.27(1) GeV.
Because the PEVA results show a much stronger chiral
curvature, the extrapolation of these results is more
sensitive to uncertainties in the regulator, as seen in its
larger error bars.
These results clearly indicate that the magnetic moment

extracted through the conventional analysis is significantly
affected by opposite parity contaminations, resulting in
incorrect results. The PEVA analysis allows us to remove
these contaminations, bringing our results in line with
experiment.

VII. CONCLUSION

In this paper, we extended the parity-expanded varia-
tional analysis (PEVA) technique to the calculation of
elastic form factors, and applied it to calculating the Sachs
electric and magnetic form factors of the ground-state
proton and neutron. This required inspection of the
Dirac structure of the three point correlation function
and careful selection of appropriate spinor projectors to
extract the desired form factors with maximized signal.
Nucleon structure is a vibrant and rich field of study, and

there have been investigations of the Sachs electric and
magnetic form factors of the ground state nucleon spanning
decades. In this paper we focused specifically on the
application of the PEVA technique [1] to form factor
calculations and on the systematic errors introduced by
opposite-parity contaminations which may be present in
conventional analyses.
We demonstrated the efficacy of variational analysis

techniques in general, and PEVA specifically, at controlling

excited-state contaminations in the electric form factor.
Both the PEVA and conventional variational analysis show
clear and clean plateaus, supporting previous work dem-
onstrating the utility of variational analysis in calculating
baryon matrix elements [21,22].
In the particular case of themagnetic form factor,we found

evidence that the conventional analysis was contaminated by
opposite-parity states. For the kinematics considered here,
we observe ∼20% underestimation of the magnitude of the
contributions to the magnetic form factor from the singly
represented quark flavor at the lighter pion masses. The only
difference in the interpolators is that opposite-parity con-
taminations can be addressed in our new PEVA approach.
The difference indicates these contaminations are present in
the standard variational approach. As the PEVA approach
provides additional interpolator degrees of freedom to
improve the ground state interpolating field, this is the
improved interpolating field.
Further evidence of the improvement afforded by the

PEVA approach is presented in Ref. [27], wherewe explored
excited states of the nucleon at larger quarkmasses. Only the
PEVA approach is able to resolve magnetic form factors in
accord with constituent quark models. Quark models are
renowned for capturing the qualitative features of baryon
magnetic moments at larger quark masses.
These results indicate that existing calculations that do not

take into account opposite-parity contaminations may be
affected by systematic errors on the order of 20% at physical
quark masses. As such, the PEVA technique is critical for
precision measurements of the nucleon form factors.
By utilizing the PEVA technique and boosted-frame

techniques, we are able to successfully extract the Sachs
form factors of the ground-state nucleon at a range of Q2

values. These extractions allow us to investigate the Q2

dependence of these form factors. By taking ratios of the
form factors, we are also able to extract the magnetic
moments of both the ground-state proton and the ground-
state neutron.
This paper has established the groundwork for applying

the PEVA technique to calculating baryonic matrix ele-
ments. The applications for future research are broad. The
techniques presented here could be applied directly to the
examination of other nucleon observables or excited state
observables. One possibility is to examine a matrix element
that should vanish in the ground-state nucleon, where any
nonzero value is evidence of excited state contamination.
An extension is currently underway for the calculation of
nucleon transition form factors.
A straightforward application of the calculations per-

formed here, with extra statistics and a range of lattice
spacings and volumes to quantify systematic errors, could
provide state-of-the-art ab-initio determinations of the
nucleon electromagnetic form factors. Such a study should
also be able to fully quantify the difference between PEVA
and conventional results at the physical point and confirm

FIG. 18. Pion-mass dependence of the extracted magnetic
moment for the isovector combination with finite-volume cor-
rections from Ref. [26]. At the physical point, we present chiral
extrapolations of the PEVA and conventional results with filled
and open stars respectively. The PEVA result agrees well with the
physical value of 4.70μN [19], represented by a black star.
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the disagreement between the conventional magnetic
moment extractions and the physical results.
Our results indicate that excited-state effects can be

much worse in three-point functions than two-point func-
tions. The contrast between the good agreement between
PEVA and conventional extractions of the ground state
mass and the disagreement between extractions of the
magnetic form factor indicate that a plateau in the two-point
correlator is thus insufficient evidence to be confident that
the three-point correlator will be free of excited-state
contaminations. Future calculations can consider a range
of current insertion times following the onset of ground-
state dominance in the two-point function to quantitatively
assess excited-state systematics.
An approach to applying PEVA to spin-3=2 states is

under consideration, allowing the issue of parity mixing to
be addressed for a wider range of baryonic states. Such an
extension would also allow for the inclusion of spin-3=2
states in the variational analysis for the nucleon, addressing
systematic errors that may arise from the mixing of
eigenstates of total angular momentum in moving frames.
For a fully comprehensive study of excited state contam-
inations of the ground state nucleon multiparticle states
should also be considered. Rigorously treating such states
requires nonlocal interpolators and this would be a chal-
lenging but worthwhile avenue for further study, as it could
simultaneously give additional insight into the nature of

nucleon resonances. A comprehensive study addressing all
of these sources of excited state contaminations could look
at how strong the effects of each contaminant are and
determine which states are most responsible for errors in
the matrix elements extracted by conventional techniques.
A particularly interesting development in the field that

could benefit greatly from the application of the PEVA
technique is the computation of nonforward matrix ele-
ments from two point correlation functions via the
Feynman-Hellmann theorem [28].
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