001019933 001__ 1019933
001019933 005__ 20250310131236.0
001019933 020__ $$a978-3-031-46359-4
001019933 020__ $$a978-3-031-46359-4 (electronic)
001019933 0247_ $$2doi$$a10.1007/978-3-031-46359-4_6
001019933 0247_ $$2WOS$$aWOS:001360275500007
001019933 037__ $$aFZJ-2023-05754
001019933 1001_ $$0P:(DE-HGF)0$$aBellomo, Nicola$$b0$$eEditor
001019933 245__ $$aSingle-File Pedestrian Dynamics: A Review of Agent-Following Models
001019933 260__ $$aCham$$bSpringer International Publishing$$c2023
001019933 29510 $$aCrowd Dynamics, Volume 4 / Bellomo, Nicola (Editor) ; Cham : Springer International Publishing, 2023, Chapter 6 ; ISSN: 2164-3679=2164-3725 ; ISBN: 978-3-031-46358-7=978-3-031-46359-4 ; doi:10.1007/978-3-031-46359-4
001019933 300__ $$a143 - 178
001019933 3367_ $$2ORCID$$aBOOK_CHAPTER
001019933 3367_ $$07$$2EndNote$$aBook Section
001019933 3367_ $$2DRIVER$$abookPart
001019933 3367_ $$2BibTeX$$aINBOOK
001019933 3367_ $$2DataCite$$aOutput Types/Book chapter
001019933 3367_ $$0PUB:(DE-HGF)7$$2PUB:(DE-HGF)$$aContribution to a book$$bcontb$$mcontb$$s1704188519_26653
001019933 4900_ $$aModeling and Simulation in Science, Engineering and Technology
001019933 520__ $$aSingle-file dynamics has been studied intensively, both experimentally and theoretically. It shows interesting collective effects, such as stop-and-go waves, which are validation cornerstones for any agent-based modeling approach of traffic systems. Many models have been proposed, e.g. in the form of car-following models for vehicular traffic. These approaches can be adapted for pedestrian streams. In this study, we delve deeper into these models, with particular attention on their interconnections. We do this by scrutinizing the influence of different parameters, including relaxation times, anticipation time, and reaction time. Specifically, we analyze the inherent fundamental problems with force-based models, a classical approach in pedestrian dynamics. Furthermore, we categorize car-following models into stimulus-response and optimal velocity models, highlighting their historical and conceptual differences. These classes can further be subdivided considering the conceptual definitions of the models, e.g. first-order vs. second-order models, or stochastic vs. deterministic models with and without noise. Our analysis shows how car-following models originally developed for vehicular traffic can provide new insights into pedestrian behavior. The focus on single-file motion, which is similar to single-lane vehicular traffic, allows for a detailed examination of the relevant interactions between pedestrians.
001019933 536__ $$0G:(DE-HGF)POF4-5111$$a5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511)$$cPOF4-511$$fPOF IV$$x0
001019933 588__ $$aDataset connected to CrossRef Book Series, Journals: juser.fz-juelich.de
001019933 7001_ $$0P:(DE-HGF)0$$aGibelli, Livio$$b1$$eEditor
001019933 7001_ $$0P:(DE-Juel1)187329$$aCordes, Jakob$$b2$$ufzj
001019933 7001_ $$0P:(DE-Juel1)132077$$aChraibi, Mohcine$$b3$$eCorresponding author$$ufzj
001019933 7001_ $$0P:(DE-HGF)0$$aTordeux, Antoine$$b4
001019933 7001_ $$0P:(DE-HGF)0$$aSchadschneider, Andreas$$b5
001019933 773__ $$a10.1007/978-3-031-46359-4_6
001019933 8564_ $$uhttps://juser.fz-juelich.de/record/1019933/files/Crowd_Book___Vol_4.pdf$$yRestricted
001019933 8564_ $$uhttps://juser.fz-juelich.de/record/1019933/files/Crowd_Book___Vol_4.gif?subformat=icon$$xicon$$yRestricted
001019933 8564_ $$uhttps://juser.fz-juelich.de/record/1019933/files/Crowd_Book___Vol_4.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
001019933 8564_ $$uhttps://juser.fz-juelich.de/record/1019933/files/Crowd_Book___Vol_4.jpg?subformat=icon-180$$xicon-180$$yRestricted
001019933 8564_ $$uhttps://juser.fz-juelich.de/record/1019933/files/Crowd_Book___Vol_4.jpg?subformat=icon-640$$xicon-640$$yRestricted
001019933 909CO $$ooai:juser.fz-juelich.de:1019933$$pVDB
001019933 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)187329$$aForschungszentrum Jülich$$b2$$kFZJ
001019933 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)132077$$aForschungszentrum Jülich$$b3$$kFZJ
001019933 9131_ $$0G:(DE-HGF)POF4-511$$1G:(DE-HGF)POF4-510$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5111$$aDE-HGF$$bKey Technologies$$lEngineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action$$vEnabling Computational- & Data-Intensive Science and Engineering$$x0
001019933 9141_ $$y2023
001019933 920__ $$lyes
001019933 9201_ $$0I:(DE-Juel1)IAS-7-20180321$$kIAS-7$$lZivile Sicherheitsforschung$$x0
001019933 980__ $$acontb
001019933 980__ $$aVDB
001019933 980__ $$aI:(DE-Juel1)IAS-7-20180321
001019933 980__ $$aUNRESTRICTED