001     1019939
005     20240226075230.0
024 7 _ |a 10.24435/MATERIALSCLOUD:VY-YG
|2 doi
024 7 _ |a 10.24435/materialscloud:vy-yg
|2 doi
037 _ _ |a FZJ-2023-05760
041 _ _ |a English
100 1 _ |a Gao, Tenghua
|0 P:(DE-HGF)0
|b 0
245 _ _ |a DFT calculations of the electronic structure of CoPt in L1₁ and A1 structures
260 _ _ |c 2023
|b Materials Cloud
336 7 _ |a MISC
|2 BibTeX
336 7 _ |a Dataset
|b dataset
|m dataset
|0 PUB:(DE-HGF)32
|s 1704199820_26652
|2 PUB:(DE-HGF)
336 7 _ |a Chart or Table
|0 26
|2 EndNote
336 7 _ |a Dataset
|2 DataCite
336 7 _ |a DATA_SET
|2 ORCID
336 7 _ |a ResearchData
|2 DINI
520 _ _ |a Spintronics applications for high-density non-volatile memories require simultaneous optimization of the perpendicular magnetic anisotropy (PMA) and current-induced magnetization switching. These properties determine, respectively, the thermal stability of a ferromagnetic memory cell and a low operation power consumption, which are mutually incompatible with the spin transfer torque as the driving force for the switching. Here, we demonstrate a strategy of alloy engineering to overcome this obstacle by using electrically induced orbital currents instead of spin currents. A non-equilibrium orbital density generated in paramagnetic γ-FeMn flows into CoPt coupled to the magnetization through spin-orbit interaction, ultimately creating an orbital torque. Controlling the atomic arrangement of Pt and Co by structural phase transition, we show that the propagation length of the transferred angular momentum can be modified concurrently with the PMA strength. We find a strong correlation to the phase transition-induced changes of d orbitals with mₗ = ±1 and mₗ = ±2 character. The close link of orbital hybridization to the dynamic orbital response and magnetic properties offers new possibilities to realize optimally designed orbitronics memory and logic applications.This dataset contains the DFT calculations for the electronic structure of CoPt in L1₁ and A1 structures that are discussed the corresponding publication.
536 _ _ |a 5211 - Topological Matter (POF4-521)
|0 G:(DE-HGF)POF4-5211
|c POF4-521
|f POF IV
|x 0
536 _ _ |a DFG project 390534769 - EXC 2004: Materie und Licht für Quanteninformation (ML4Q) (390534769)
|0 G:(GEPRIS)390534769
|c 390534769
|x 1
588 _ _ |a Dataset connected to DataCite
650 _ 7 |a density-functional theory
|2 Other
650 _ 7 |a Orbital torque
|2 Other
650 _ 7 |a orbitronics
|2 Other
700 1 _ |a Rüßmann, Philipp
|0 P:(DE-Juel1)157882
|b 1
|e Corresponding author
|u fzj
700 1 _ |a Wang, Qianwen
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Hayashi, Hiroki
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Go, Dongwook
|0 P:(DE-Juel1)178993
|b 4
|u fzj
700 1 _ |a Zhang, Song
|0 P:(DE-Juel1)157908
|b 5
700 1 _ |a Harumoto, Takashi
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Tu, Rong
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Zhang, Lianmeng
|0 P:(DE-HGF)0
|b 8
700 1 _ |a Mokrousov, Yuriy
|0 P:(DE-Juel1)130848
|b 9
|u fzj
700 1 _ |a Shi, Ji
|0 P:(DE-HGF)0
|b 10
700 1 _ |a Ando, Kazuya
|0 P:(DE-HGF)0
|b 11
773 _ _ |a 10.24435/materialscloud:vy-yg
909 C O |o oai:juser.fz-juelich.de:1019939
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)157882
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)178993
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 9
|6 P:(DE-Juel1)130848
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-521
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Quantum Materials
|9 G:(DE-HGF)POF4-5211
|x 0
914 1 _ |y 2023
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IAS-1-20090406
|k IAS-1
|l Quanten-Theorie der Materialien
|x 0
920 1 _ |0 I:(DE-Juel1)PGI-1-20110106
|k PGI-1
|l Quanten-Theorie der Materialien
|x 1
980 _ _ |a dataset
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IAS-1-20090406
980 _ _ |a I:(DE-Juel1)PGI-1-20110106
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21