001019940 001__ 1019940
001019940 005__ 20240226075230.0
001019940 0247_ $$2doi$$a10.24435/MATERIALSCLOUD:GT-0R
001019940 0247_ $$2doi$$a10.24435/materialscloud:gt-0r
001019940 037__ $$aFZJ-2023-05761
001019940 041__ $$aEnglish
001019940 1001_ $$0P:(DE-Juel1)177774$$aJanßen, Kevin$$b0
001019940 245__ $$aSingle in-situ interface characterization composed of niobium and a selectively grown (Bi1-xSbx)2Te3 topological insulator nanoribbon
001019940 260__ $$bMaterials Cloud$$c2023
001019940 3367_ $$2BibTeX$$aMISC
001019940 3367_ $$0PUB:(DE-HGF)32$$2PUB:(DE-HGF)$$aDataset$$bdataset$$mdataset$$s1704201632_26654
001019940 3367_ $$026$$2EndNote$$aChart or Table
001019940 3367_ $$2DataCite$$aDataset
001019940 3367_ $$2ORCID$$aDATA_SET
001019940 3367_ $$2DINI$$aResearchData
001019940 520__ $$aWith increasing interest in Majorana physics for possible quantum bit applications, a large interest has been developed to understand the properties of the interface between a s-type superconductor and a topological insulator. Up to this point the interface analysis was mainly focused on in-situ prepared Josephson junctions, which consist of two coupled single interfaces or to ex-situ fabricated single interface devices. In our work we utilize a novel fabrication process, combining selective area growth and shadow evaporation which allows the characterization of a single in-situ fabricated Nb/(Bi0.15Sb0.85)2Te3 nano interface. The resulting high interface transparency, is apparent by a zero bias conductance increase by a factor of 1.7. Furthermore, we present a comprehensive differential conductance analysis of our single in-situ interface for various magnetic fields, temperatures and gate voltages. Additionally, density functional theory calculations of the superconductor/topological insulator interface are performed in order to explain the peak-like shape of our differential conductance spectra and the origin of the observed smearing of conductance features.This dataset contains the DFT and experimental raw data discussed in the associated publication.
001019940 536__ $$0G:(DE-HGF)POF4-5211$$a5211 - Topological Matter (POF4-521)$$cPOF4-521$$fPOF IV$$x0
001019940 536__ $$0G:(GEPRIS)390534769$$aDFG project 390534769 - EXC 2004: Materie und Licht für Quanteninformation (ML4Q) (390534769)$$c390534769$$x1
001019940 588__ $$aDataset connected to DataCite
001019940 650_7 $$2Other$$asuperconductivity
001019940 650_7 $$2Other$$atopological materials
001019940 650_7 $$2Other$$atopological superconductor
001019940 650_7 $$2Other$$aMajorana
001019940 650_7 $$2Other$$atransport
001019940 650_7 $$2Other$$aexperiment
001019940 650_7 $$2Other$$adensity-functional theory
001019940 7001_ $$0P:(DE-Juel1)157882$$aRüßmann, Philipp$$b1$$eCorresponding author$$ufzj
001019940 7001_ $$0P:(DE-Juel1)186768$$aLiberda, Sergej$$b2$$ufzj
001019940 7001_ $$0P:(DE-Juel1)171405$$aSchleenvoigt, Michael$$b3$$ufzj
001019940 7001_ $$0P:(DE-Juel1)165589$$aHou, Xiao$$b4$$ufzj
001019940 7001_ $$0P:(DE-Juel1)171826$$aJalil, Abdur Rehman$$b5$$ufzj
001019940 7001_ $$0P:(DE-Juel1)130795$$aLentz, Florian$$b6$$ufzj
001019940 7001_ $$0P:(DE-Juel1)128856$$aTrellenkamp, Stefan$$b7$$ufzj
001019940 7001_ $$0P:(DE-Juel1)161192$$aBennemann, Benjamin$$b8$$ufzj
001019940 7001_ $$0P:(DE-Juel1)176848$$aZimmermann, Erik$$b9
001019940 7001_ $$0P:(DE-Juel1)128617$$aMussler, Gregor$$b10$$ufzj
001019940 7001_ $$0P:(DE-Juel1)165984$$aSchüffelgen, Peter$$b11$$ufzj
001019940 7001_ $$0P:(DE-Juel1)130948$$aSchneider, Claus-Michael$$b12$$ufzj
001019940 7001_ $$0P:(DE-Juel1)130548$$aBlügel, Stefan$$b13$$ufzj
001019940 7001_ $$0P:(DE-Juel1)125588$$aGrützmacher, Detlev$$b14$$ufzj
001019940 7001_ $$0P:(DE-Juel1)130895$$aPlucinski, Lukasz$$b15$$ufzj
001019940 7001_ $$0P:(DE-Juel1)128634$$aSchäpers, Thomas$$b16$$ufzj
001019940 773__ $$a10.24435/materialscloud:gt-0r
001019940 909CO $$ooai:juser.fz-juelich.de:1019940$$pVDB
001019940 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)157882$$aForschungszentrum Jülich$$b1$$kFZJ
001019940 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)186768$$aForschungszentrum Jülich$$b2$$kFZJ
001019940 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)171405$$aForschungszentrum Jülich$$b3$$kFZJ
001019940 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)165589$$aForschungszentrum Jülich$$b4$$kFZJ
001019940 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)171826$$aForschungszentrum Jülich$$b5$$kFZJ
001019940 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130795$$aForschungszentrum Jülich$$b6$$kFZJ
001019940 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128856$$aForschungszentrum Jülich$$b7$$kFZJ
001019940 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)161192$$aForschungszentrum Jülich$$b8$$kFZJ
001019940 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128617$$aForschungszentrum Jülich$$b10$$kFZJ
001019940 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)165984$$aForschungszentrum Jülich$$b11$$kFZJ
001019940 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130948$$aForschungszentrum Jülich$$b12$$kFZJ
001019940 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130548$$aForschungszentrum Jülich$$b13$$kFZJ
001019940 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)125588$$aForschungszentrum Jülich$$b14$$kFZJ
001019940 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130895$$aForschungszentrum Jülich$$b15$$kFZJ
001019940 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128634$$aForschungszentrum Jülich$$b16$$kFZJ
001019940 9131_ $$0G:(DE-HGF)POF4-521$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5211$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vQuantum Materials$$x0
001019940 9141_ $$y2023
001019940 920__ $$lyes
001019940 9201_ $$0I:(DE-Juel1)IAS-1-20090406$$kIAS-1$$lQuanten-Theorie der Materialien$$x0
001019940 9201_ $$0I:(DE-Juel1)PGI-1-20110106$$kPGI-1$$lQuanten-Theorie der Materialien$$x1
001019940 980__ $$adataset
001019940 980__ $$aVDB
001019940 980__ $$aI:(DE-Juel1)IAS-1-20090406
001019940 980__ $$aI:(DE-Juel1)PGI-1-20110106
001019940 980__ $$aUNRESTRICTED