001019941 001__ 1019941
001019941 005__ 20240226075230.0
001019941 0247_ $$2doi$$a10.24435/materialscloud:20-9z
001019941 037__ $$aFZJ-2023-05762
001019941 041__ $$aEnglish
001019941 1001_ $$0P:(DE-Juel1)157882$$aRüßmann, Philipp$$b0$$eCorresponding author$$ufzj
001019941 245__ $$aProximity-induced Cooper pairing at low and finite energies in the gold Rashba surface state
001019941 260__ $$bMaterials Cloud$$c2023
001019941 3367_ $$2BibTeX$$aMISC
001019941 3367_ $$0PUB:(DE-HGF)32$$2PUB:(DE-HGF)$$aDataset$$bdataset$$mdataset$$s1704199837_26655
001019941 3367_ $$026$$2EndNote$$aChart or Table
001019941 3367_ $$2DataCite$$aDataset
001019941 3367_ $$2ORCID$$aDATA_SET
001019941 3367_ $$2DINI$$aResearchData
001019941 520__ $$aMulti-band effects in superconducting heterostructures provide a rich playground for unconventional physics. We combine two complementary approaches based on density-functional theory (DFT) and effective low-energy model theory in order to investigate the proximity effect in a gold overlayer on the s-wave superconductor aluminium. We explain both theoretical approaches and intertwine the effective model and DFT analysis. This allows us to predict finite energy superconducting avoided crossings due to the interplay of the Rashba surface state of Au, and hybridization with the electronic structure of superconducting Al. We investigate the nature of the induced superconducting pairing and analyze their mixed singlet-triplet character. Our findings demonstrate the general recipes to explore material systems that exhibit novel finite-energy pairings.This dataset accompanies a publication where the data is presented and discussed in detail.
001019941 536__ $$0G:(DE-HGF)POF4-5211$$a5211 - Topological Matter (POF4-521)$$cPOF4-521$$fPOF IV$$x0
001019941 536__ $$0G:(GEPRIS)390534769$$aDFG project 390534769 - EXC 2004: Materie und Licht für Quanteninformation (ML4Q) (390534769)$$c390534769$$x1
001019941 588__ $$aDataset connected to DataCite
001019941 650_7 $$2Other$$aab initio
001019941 650_7 $$2Other$$asuperconductivity
001019941 650_7 $$2Other$$aBogoliubov-de Gennes
001019941 650_7 $$2Other$$aspin orbit coupling
001019941 650_7 $$2Other$$aJuKKR
001019941 7001_ $$0P:(DE-HGF)0$$aBahari, Masoud$$b1
001019941 7001_ $$0P:(DE-Juel1)130548$$aBlügel, Stefan$$b2$$ufzj
001019941 7001_ $$0P:(DE-HGF)0$$aTrauzettel, Björn$$b3
001019941 909CO $$ooai:juser.fz-juelich.de:1019941$$pVDB
001019941 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)157882$$aForschungszentrum Jülich$$b0$$kFZJ
001019941 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130548$$aForschungszentrum Jülich$$b2$$kFZJ
001019941 9131_ $$0G:(DE-HGF)POF4-521$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5211$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vQuantum Materials$$x0
001019941 9141_ $$y2023
001019941 920__ $$lyes
001019941 9201_ $$0I:(DE-Juel1)IAS-1-20090406$$kIAS-1$$lQuanten-Theorie der Materialien$$x0
001019941 9201_ $$0I:(DE-Juel1)PGI-1-20110106$$kPGI-1$$lQuanten-Theorie der Materialien$$x1
001019941 980__ $$adataset
001019941 980__ $$aVDB
001019941 980__ $$aI:(DE-Juel1)IAS-1-20090406
001019941 980__ $$aI:(DE-Juel1)PGI-1-20110106
001019941 980__ $$aUNRESTRICTED